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ABSTRACT 
We develop a general population genetic framework for analyzing  selection on many  loci, and apply 

it to strong truncation and disruptive  selection on an additive  polygenic  trait. We first present statistical 
methods for analyzing the infinitesimal model, in  which  offspring breeding values are normally distributed 
around the mean of the parents, with fixed  variance. These show that the usual  assumption of a Gaussian 
distribution of breeding values in the population gives remarkably accurate predictions for the mean and 
the variance, even  when  disruptive  selection generates substantial  deviations  from  normality. We then set 
out a general genetic analysis  of selection and recombination. The population is represented by multilocus 
cumulants describing the distribution of haploid genotypes, and selection is described by the relation 
between  mean  fitness and these cumulants. We provide  exact recursions in terms of generating functions 
for the effects of selection on non-central moments. The effects of recombination are simply calculated 
as a weighted  sum  over  all the permutations produced by meiosis.  Finally, the new cumulants that describe 
the next generation are computed from the non-central moments.  Although  this  scheme is applied here 
in detail only  to  selection on an additive trait, it is quite general. For arbitrary epistasis and linkage, we 
describe a consistent infinitesimal  limit in which the short-term selection  response is dominated by in- 
finitesimal  allele frequency changes and linkage  disequilibria.  Numerical  multilocus  results show that  the 
standard Gaussian approximation gives accurate predictions for the dynamics of the mean and genetic 
variance  in  this  limit. Even  with intense truncation selection, linkage  disequilibria of order three and 
higher never  cause much deviation  from  normality. Thus, the empirical deviations frequently found 
between predicted and observed  responses  to  artificial  selection are  not caused by linkage-disequilibrium- 
induced departures from normality.  Disruptive  selection  can generate substantial four-way disequilibria, 
and hence kurtosis; but even then, the Gaussian  assumption predicts the variance  accurately. In contrast 
to the apparent simplicity  of the infinitesimal  limit, data suggest that changes in genetic variance after 10 
or more generations of selection are likely to  be dominated by allele  frequency  dynamics that depend on 
genetic details. 

M OST analyses  of selection on polygenic traits as- 
sume that  the joint distribution of phenotypes 

and of breeding values is approximately Gaussian, once 
an appropriate scale  of measurement is chosen. This 
ensures  that  the average phenotype of the offspring de- 
pends linearly on the phenotypes of the two parents and 
implies the  standard  equation  for  the response of the 
mean  to selection: 

AZ = h2A,Z, (1) 

( i. e. ,  R = h2S).  Here AZis the selection response (R, the 
between-generation change in the  mean); h2 = V,/ V, is 
the  (narrow sense) heritability, the fraction of the  phe- 
notypic variance attributable to additive genetic effects; 
and A,Z is the selection differential [S, the within- 
generation  change in the  mean caused by selection, e$ 
BULMER (1980, Ch. 9)]. 

FISHER (1918) reconciled the Gaussian  statistical de- 
scription of the  inheritance of quantitative traits with 
Mendelian genetics by assuming a very large number of 

unlinked loci, each with  small additive effects. This gives 
the “infinitesimal model,” in which each cross produces 
offspring whose phenotypes are normally distributed 
around  the  mean of the  parents, with a fixed variance 
due to independent segregation at many loci. It  does 
not, however,  justify the multivariate Gaussian  assump- 
tion that leads to Equation 1, because selection will gen- 
erally distort  the distribution of breeding values away 
from a Gaussian (BULMER 1980, Ch. 9). TURELLI and 
BARTON (1990) argued  that such distortions, which arise 
even under weak selection through  the  generation of 
third and higher order linkage disequilibria, could in 
principle be substantial when selection is strong. We also 
began to develop a multilocus genetic approach to poly- 
genic selection that includes both allele frequency 
changes and linkage disequilibria. The infinitesimal 
model can predict only departures from normality 
caused by linkage disequilibria and  not those caused by 
epistasis. It also cannot describe the  changes in within- 
family genetic variance caused by the allele frequency 
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changes  that must occur with selection on a finite num- 
ber of  loci. This paper develops general statistical and 
multilocus population genetic methods  for  understand- 
ing  the effects  of selection on polygenic traits without 
assuming normality, and applies these to additive ge- 
netic models to  determine when and why the  standard 
Gaussian methods  are accurate. Our basic conclusion, 
which could not have been  foreseen from our weak  se- 
lection analysis,  is that even intense  truncation selection 
on  an additive polygenic trait is not likely to produce 
significant departures from (1) caused by higher order 
disequilibria. 

We begin by setting out two “statistical” methods  for 
deriving numerical results from the infinitesimal model: 
one based on iterating  the distribution of breeding val- 
ues, and  the  other based on  the  cumulants of this dis- 
tribution (cJ ZENC 1987). We then generalize our pre- 
vious genetic analyses (TURELLI and BARTON 1990; 
BARTON and TURELLI 1991) to provide exact equations 
for  the dynamics  of the means, variances, and higher- 
order cumulants under selection on an additive poly- 
genic trait. We set out a general algorithm that describes 
the dynamics  of cumulants of arbitrary order. We  give 
explicit equations  for changes in the first four  cumulants 
(mean, variance, skewness and kurtosis) that involve  se- 
lection coefficients up to  fourth-order  (defined below) 
and cumulants (and disequilibria) up to eighth  order. 
These  are checked by comparison with the infinitesimal 
model, and with exact numerical iterations of gamete 
frequencies  for up to 100 loci, in which fitness is a poly- 
nomial function of the phenotypic (or genotypic) value. 
We use these results to  approximate  the consequences 
of two forms of phenotypic selection: truncation selec- 
tion, because of  its practical importance to plant and 
animal breeders,  and disruptive selection, both as a 
model of speciation and because of its  capacity to pro- 
duce large departures from normality. Our analytical 
approximations for these non-polynomial selection 
schemes are checked against deterministic multilocus 
numerical calculations. We also extend  the infinitesimal 
limit to allow for non-additive gene action. 

The goal of our genetic analyses is to develop general 
and tractable methods  for  understanding multilocus 
selection. We introduce  three innovations. First, we 
combine our general analysis of multilocus selection 
(BARTON and TURELLJ 1991) with a description of selec- 
tion in terms of gradients in mean fitness (BARTON and 
TURELLI 1987; TURELLI and BARTON 1990). Second, we 
give the equations in terms of cumulants  rather  than 
moments  [a multilocus generalization of B~JRGER 
(1991)l. Finally, we have automated  the intimidating 
algebra using the Mathernatica symbolic computation 
language [WOLFRAM (1991), notebooks for  the Macin- 
tosh are available on request]. We show that  there is a 
class  of models, which includes truncation selection on 
an additive polygenic trait, for which the distribution of 
breeding values remains close to Gaussian  even when 

selection is intense. In these cases,  dynamics can be ac- 
curately predicted  in terms of the  gradients in mean 
fitness  with respect to the  population mean and vari- 
ance. The short-term effects of linkage disequilibria on 
genetic variance are described ~ ~ B U L M E R ’ S  (1971,1980) 
extension of the infinitesimal model, while allele fre- 
quencies change  more slowly, and  depend  on  the de- 
tailed distribution of  effects of each locus. 

We concentrate on the simplest case  of a trait deter- 
mined by the sum of  effects  of  alleles at many loci, plus 
a normally distributed environmental component. Our 
analysis  of strong selection with simple genetics is 
complementary to NAGW’S (1993) analysis  of  weak 
selection with more complex genetics and BURGER’S 
(1993) and ZHIVOTOVSKY and GAVRILETS’ (1992) analyses 
of exponential and quadratic selection. We assume  dis- 
crete  generations, diploidy, autosomal inheritance, ran- 
dom mating and viability selection [see BARTON and 
TURELLI (1991, Fig. l ) ] .  However, our methods can be 
applied to more  general issues in population genetics 
theory. They readily extend  to arbitrary patterns of natu- 
ral and sexual selection (BARTON and TURELLI 1991). Our 
results suggest that with  polygenic inheritance,  higher 
order interactions  can often be neglected, allowing  mul- 
tilocus  systems to  be  understood in terms of  allele fre- 
quencies and painvise linkage disequilibria. 

STATISTICAL ANALYSES: 
A  NON-GAUSSIAN  INFINITESIMAL  MODEL 

The simplest model for  the  inheritance of quantitative 
traits assumes that within each family, the  breeding val- 
ues of sibs  follow a normal distribution with fixed vari- 
ance, and mean  equal to the average  of the  breeding 
values  of the two parents. This is  known  as the infini- 
tesimal model, because it emerges when the trait is the 
sum of infinitesimal contributions from an infinite num- 
ber of unlinked genes (BULMER 1980). The model fur- 
ther assumes that all genotypes experience  independent 
and identically distributed environmental contributions 
that  are normally distributed with mean 0 and variance 
V,. Under  the infinitesimal model,  the variance within 
families is half the variance due to segregation at indi- 
vidual loci (denoted VG,LE, the “genic variance,” which is 
the genetic variance at linkage equilibrium). The dis- 
tribution of breeding values in the population tends to- 
wards a normal distribution with variance VG,IE How- 
ever, selection can generate linkage disequilibria that 
alter  the genetic variance and distort the distribution 
away from normality. 

Even  with this simple model,  understanding  the ef- 
fects of strong  truncation selection is not trivial. Let 
*( g) denote  the distribution (probability density func- 
tion) of breeding values among zygotes before selection. 
(Table 1 provides a glossary of notation.) Selection just 
weights *( g) by W( g) , the fitness function for breeding 
values,  giving ** ( g) = T( g) W( g)/ W ,  with W = 
*( g) W( g)dg.  Reproduction (meiosis and  random 
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TABLE 1 

Glossary of repeatedly used notation 

915 

Symbol  Usage, (relevant equation in  the text) 

‘S, T 

Lu, v 
P 
‘S. T 

Noncentral moment, the expectation of the product of contributions of  loci  in the set U:E(xU), ( l lb)  
Non-central moment for diploids, involving  maternally inherited alleles at the loci in U and paternally inherited alleles at 

Central moment, the expectation of the product of deviations from the mean over  loci in the set U, (55, APPENDIX A) 

Frequency of  newly produced haploid products of meiosis with genotype x; sometimes used as shorthand for f ( x ,  x*), (14) 
Frequency of diploids with genes from the mother in state x, from the  father in state x*, see paragraph following (12c) 
Fourier transform of f ( x ) ,  (6b) 
Moment generating function of f ( x ) ,  (1 1) 
Heritability, VA/ V, = V d  V, for the additive model (20),  (1). 
ith Hermite polynomial, (3) 
Label individual loci 
“Selection intensity” under truncation selection with a fraction p of the population selected, (34) 
ith cumulant of the distribution of breeding values, (8) 
Cumulant generating function, (12) 
Under the additive model, the selection gradient with respect to the ith cumulant of the distribution of breeding values or 

Selection gradient with respect to the cumulant K ~ , ~ ,  d In( W ) / ~ K ~ , ?  (19) 
Selection gradient with respect to the central moment Cu,v dog( W ) / d C , ,  (APPENDIX A) 

Under truncation selection, the fraction of the population selected, (34) 
For disjoint sets S and T, this denotes the frequency of recombination events that combine alleles from one parent at loci in 

Label  sets  of  loci: e.g., S = (iij} 
Concatenation of the elements in sets U and V, e.g., if U = { i i }  and V = (01, U+ V = (iiz)], (APPENDIX A) 

Set obtained by deleting the elements of Vfrom U, e.g., if U = {zii jk] and V = { i j ,  U-V = ( i i k } ,  (APPENDIX A) 

Number of elements in U: e.g., I (201 I = 3, (1 Ib) 
Environmental variance 
Additive genetic variance: for the additive model, V, = 2 K~ 

Genic variance: for the additive model, VG,m = 2 x K~~ 

Phenotypic variance: Vp = V, + V, 
Fitness  (viability)  of genotype X, X*, (14a) 
Mean  fitness,  (2, 14a) 
A vector denoting a haploid genotype: (Xl, X,, . . . , X J ,  after (12c) 
Variable indicating a haploid genotype at locus i; when  used to describe events within a generation, it refers to a maternally 

Product of X ,  over the set U: ( l lb)  
A haploid genotype at locus i in a paternally derived gamete, after (12c) 
Population mean, (1) and (20) 
Normalized skew  of the distribution of breeding values, E [ ( G  - Z)3]/VsG/2 
Kurtosis  of the distribution of breeding values, E [  ( G  - Z)4] /  V‘, - 3 
Change in the noncentral moment C*,,v between generations, (19a) 
Change in  the cumulant K~ between generations that would  be  observed if selection were so weak that products of the si 

Multivariate cumulant, (11, 12), e.g., K~~ = variance at locus i 
Standard Gaussian  density, exp( - y 2 / 2 ) / 6 ,  (3) 
Cumulative distribution of the standard normal, J:- 4( y) dy, 

the loci in V, (19a) 

phenotypes (24, 26), note that Y j  = d In( m / d I $  = 2s,T-with j = I S+ TI 

S with alleles from the  other  parent at loci in T, (13) 

derived gamete, after (12c) and (14) 

could be ignored, (36-41) 

Probability density function of breeding values among zygotes before selection, (2) 
~~ 

mating) then gives the distribution in the next genera- We  will describe two approaches for calculating the 
tion as net effect of selection and reproduction, without  assum- 

ing that the distribution of breeding values, U( g ) ,  is 

(2) and FISHER (193’1) and applied  most  thoroughly by ZENC 
(1987), approximates the distribution by a Gram- 

dx dy. Charlier  expansion [STUART and Om (1987,  Ch. S)]. 

[cf. SLATKIN (1970) and KARLIN (1979)l. [BULMER (1980,  pp.  148-149)], and hence in the 

***@ = vk [ [ **(W*W Gaussian. The first, introduced abstractly by CORNISH 

Jg- (x + Y ) m 2 )  
VG,, Reproduction  causes a simple change to the cumulants 
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coefficients of the expansion. The second method is 
based on the fact that Equation 2 corresponds  to a prod- 
uct of Fourier transforms. Because truncation selection 
does  not cause much distortion from normality, the 
Gram-Charlier method works  well for this case. It re- 
mains surprisingly accurate even when the distribution 
departs substantially from normality. We  will illustrate 
this by comparing the Fourier transform and Gram- 
Charlier methods  for  strong disruptive selection, which 
can produce substantial deviations from normality even 
with free recombination and infinitely many  loci. 

~ Gram-Charlier  approximation: Let G denote  the 
breeding value, 2 the  population  mean and V, the 
additive genetic variance (which generally differs 
from VG,LE because of linkage disequilibrium). We 
approximate the distribution of standardized breeding 
values, Y = ( G  - Z)/fi, by 

where +(y) = exp( - y 2 / 2 ) / f i  is the  standard Gaus- 
sian density and Hi( y )  is the  ith  Hermite polynomial. 
(When the same quantity is treated as both a random 
variable and a specific value, we denote  the  random vari- 
able by a capital letter and specific  values by lower case.) 
The Hermite polynomials are  defined by dt4(  y)/dyi = 

(-1)'Hi(y)4(y); thus, H,,(y) = 1, f f l ( y )  = y, etc.,with 
HI a polynomial of order i. The coefficients cg, c4 and c5 
in (3)  equal  the cumulants K,, K4 and K5 (discussed 
further below); the relation is slightly more complicated 
for the  higher coefficients [see STUART and Om (1987, 
Ch. 6) for a discussion of both  the Hi and Equation 31. 

Applying truncation selection so that only individuals 
with phenotype at least t units above the mean survive, 
the average fitness as a function of breeding value is 

or 

where Tis  the  truncation  point scaled  relative to V, ( i. e. ,  
T = t / f i G )  and @(x)  = "Ern +( y) dy  is the cumulative 
distribution of the  standard  normal. Equation 4 follows 
from  the assumption that environmental deviations are 
Gaussian  with mean 0 and variance V, (non-Gaussian 
environmental effects  would lead to a different fitness 
function for breeding values). The first problem is to 
calculate the moments, and  hence  the cumulants, after 
selection. This can be done by referring  to  the defini- 
tion, e*( g) = q( g) W( g)/l?l, and using the integrals 

and 

where E[f(X)] is the expectation of the polynomial 
f (X), with X following a standard normal distribution. 
Since  any  polynomial f( y)  can be expressed as a sum of 
Hermite polynomials,  Equation 5 can  be  used to evaluate 
any  integral  of the form . P m  +(y)f(y).((y - T)/a!) dy. 

Reproduction reduces the  ith  cumulant by a factor 
for i = 2,3, . . . and adds V,,/2 to  the variance 

(BULMER 1980, Ch. 9). By setting these cumulants after 
selection and reproduction  equal  to  their values among 
zygotes, one obtains numerical solutions for the steady- 
state rate of advance and  for  the equilibrium variance 
and higher-order cumulants  under  recurrent trunca- 
tion selection of fixed intensity. The same values can be 
obtained, at least in principle, by iterating the integral 
equation (2). At steady state, the cumulants of order two 
and higher become constant and  the mean changes by 
a constant  amount each generation. 

Figure 1 shows the  rate of advance, additive genetic 
variance, normalized skew ( ys = E [  ( G - Z)']/ v",/'), and 
kurtosis ( y4 = E[ ( G - 2)4]/ VG - 3) of breeding values 
as a function of the mean fitness (i.e., the  proportion 
selected). To emphasize the relatively  small cumulative 
effects of selection on  the higher-order cumulants, 
the additive variance is adjusted so that  the heritability 
is h2 = 0.5 for both  the one-generation and equilibrium 
calculations. In these figures, the  truncation  point was 
calculated using the  standard  formula from Gaussian 
theory rather  than  the  more elaborate Cornish-Fisher 
approximation used by ZENC (1987). The differences in 
the  truncation  points  obtained  for these small  values of 
skew and kurtosis are negligible. Following ZENG (1987), 
the equilibrium moments were calculated using a 
fourth-order Gram-Charlier expansion. Table 2 shows 
that  higher  cumulants rapidly decline to zero, and that 
adding  extra terms to the expansion makes very little 
difference.  (Note  that  the Gram-Charlier expansion 
gives a distribution that becomes negative for large y if 
it is defined with an odd  number of terms, and may do 
so with an even number. However, this pathology arises 
only for y well outside the range of interest.) 

The dotted curves  in Figure 1, c and  d, show the dis- 
tortion  produced by one generation of selection from a 
Gaussian distribution, while the solid  curves  show the 
distortion after the  population has settled to a steady 
advance. These curves are close to each other, showing 
that  the  population rapidly equilibrates. Surprisingly, 
the greatest steady-state skew  is produced with  relatively 
weak selection, e.g. ,  with W = 85% for h2 = 0.5. The 

2-(i - 1)  
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FIGURE 1.-Response  to truncation  selection  under  the  infinitesimal  model.  Individual  panels  display: (a) the  change in 
mean  per generation, (b) the  equilibrium  genetic  variance ( VG),  (c) the skew (y3 = E [  ( G - 83]1/v,/'), and (d) the  kurtosis (y4 = 
E [  ( G - a4]/ v', - 3), as a function of the  proportion  selected. All  moments  are  expressed  relative  to  the  genic  variance, VG,.m, 
that would  be  reached  with no  selection.  The  dotted  curves  give  the  values  after  one  generation,  starting  from a Gaussian wth 
variance VG,F and  the  solid  curves  give  the  steady-state  values.  Heritability is h2 = 0.5 for  both  sets of  curves. All results  were 
calculated  using a fourth-order  Gram-Charlier  expansion. 

TABLE 2 

Effects of increasing the number of terms (imax) in the Gram-Charfier expansion (Equation 3) on the predicted change 

imax R Skew  Kurtosis  Pentosis' Hexosis 

steady-state kurtosis is also largest when selection is 
weak; it  changes  from its most positive  value at 55% se- 
lected to its most negative value when 98.5% are se- 
lected. However, the skew and kurtosis never become 
large, and have no appreciable effect on  the response to 
selection, or  on the  genetic variance. We  will show  below 
that  the same small  effects can be  deduced  from a purely 
genetic,  rather  than statistical, argument. 

Figure 2 shows  how the skew and kurtosis change with 
the heritability, for 20%, 50% and 80% selection; values 
are calculated using the  fourth-order Gram-Charlier ex- 

with the heritability, they never become large. Even 
when the trait is completely heritable,  the skew never 
rises  above 0.1, and  the kurtosis never rises  above 0.02. 

Using Fourier transforms: In this method,  the distri- 
bution after selection is found directly, by multiplying 
the initial distribution by the relative fitness function. 
Finding the effect of reproduction directly from Equa- 
tion 2 would be slow, because it requires two integrations 
for each value  of z. However, the  Fourier transform of 
the  distribution, $( f )  (defined in Equation 6b  below), 
can be  found rapidly using the fast Fourier transform 

pansion. Though deviations from normality increase algorithm. The effect of reproduction on the Fourier 
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O.' 7 -20% selected 
0.02 - a - -20% selected 
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/ 
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1 
heritability 

FIGURE 2.-The  skew (a) and  kurtosis (b) produced  under steady truncation  selection,  as a function of the  heritability.  Values 
are  calculated  as  for  Figure 1, with proportions  selected  being  20%, 50% and 80%. 

transform (ie., the convolution Equation 2 )  is then 
given by a simple multiplication, so that 

where 

Taking  the inverse Fourier transform completes the cal- 
culation, 

**(z) = [ ***@) exp( - izi) 
fi dx ( 6 4  

Numerical results can readily be  found by defining the 
distribution 1Ir( z) on an evenly spaced set of points over 
some finite range, and  then applying the fast Fourier 
transform algorithm (PRESS et al. 1989). Unfortunately, 
this does not give a practical way of calculating the slight 
deviations from normality caused by truncation selec- 
tion. The discrete approximation causes slight errors in 
the tails  of the distribution, which though small, cause 
large errors in the variance and higher moments. For ex- 
ample, suppose that  the distribution is initially Gaussian, 
with mean zero and  unit variance. Iterating  the algo- 
rithm over 1 generation with no selection, and with 
genic variance V , ,  = 1, should not change  the distri- 
bution. Table 3 shows that  although  the error in the 
distribution itself  is  small, the variance and kurtosis are 
inaccurate. Since truncation selection causes  only slight 
perturbations away from normality, the  Fourier trans- 
form  method would require  an impracticably fine grid 
to give sufficient accuracy. 

The Fourier transform method is more  appropriate 
for cases in which selection generates large deviations 
from normality; then,  the distribution cannot be ad- 
equately described in terms of its first few cumulants. To 
illustrate this, consider an  equilibrium under disruptive 
selection. We follow  FELSENSTEIN (1979) and assume that 

the fitness  of an individual with phenotype 2 is the sum 
of two Gaussians: W( z) = exp[ -s( z - 8)2/2] + 
expi-s( z + 8 ) * / 2 ] .  With environmental variance V,, 
fitness as a function of breeding value G is 

exp[-fYg- e)2/2] + exp[-s*(g+ e )2 /2 ]  
W(g) = d m .  7 (7) 

where s* = s/ (1 + sV,); this is just a smoothed version 
of the individual fitness. 

For simplicity, we consider only the symmetric equi- 
libria at which the  population mean is zero. FEEENSTEIN 
(1979) showed, using a multivariate normal model with 
constant fitnesses, that these equilibria are unstable 
when disruptive selection is strong  enough  that W*( g) 
is bimodal ( c j  BULMER 1980, Ch. 10). However, if the two 
peaks correspond to two different limiting resources, 
frequencydependent selection can act to  keep  the 
mean at zero. [FELSENSTEIN (1979) showed that  the sym- 
metric equilibria were  only quadratically unstable; thus, 
weak frequencydependence may suffice.] Although 
these equilibria are unstable under  our constant fitness 
model, they can be  approximated by iterating  the re- 
cursions beginning with the  population  mean at zero. 

When selection is  weak, W* ( g) has a single peak (cor- 
responding to stabilizing selection) ; one expects an a p  
proximately Gaussian distribution, with variance slightly 
lower than  the genic variance, VG,,. As selection be- 
comes stronger, W*( g) develops two peaks near ? @, 
and  the variance should  be inflated above VG,w When 
selection is  very strong, only individuals near -+e will 
survive.  After these mate at  random, of the population 
will consist  of offspring distributed with variance V , , / 2  
around - 8, ?4 will be distributed with variance VG,,/2 
around +8, and ?4 will be distributed with variance 
V , , / 2  around zero. Thus,  strong disruptive selection 
can produce a distribution of breeding values that is 
approximately a mixture of three Gaussians. These ex- 
pectations are confirmed by the results in Figure 3. The 
lower panels show a transition from an approximately 
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TABLE 3 

Values  produced by the  Fourier  transform  method  after  one  generation  without  selection, starting from a Gaussian distribution with  genetic 
variance  and  genic  variance  equal  to 1, using grids of different  mesh  and  different ranges of integration 

Variance Kurtosis 

ha  (-83) (-66) (-4,4) (-8,8) (-6,6)  (-4,4) AV\Y,axC 

32 1.0266 0.9872 1.0027 1.0465 -0.8538 -0.3866 0.022555 
64  0.9805 0.9948 0.9971 -0.7535 -0.1043 -0.0361 0.001053 

128 0.9829 0.9953 0.9968 -0.6224 -0.0689 -0.0160 0.000633 
256  0.9842 0.9955 0.9968 -0.5684 -0.0608 -0.0148 0.000732 

The  number of points spaced over the  range (-8,  8) used for  the fast Fourier transform. 
The  range over which the  moments were calculated by numerical integration. 

'The maximum  deviation of the numerically determined probability density function  from  the  expected Gaussian. 

a 5 -  -Fourier transform 
- --Gaussian 

-----Gram-Charlier 

3 -  FIGURE 3.-Consequences of disruptive se- 
lection  under  the  infinitesimal  model.  Graph 
a shows  the  genetic  variance  maintained.  The 
solid curve gives  values  calculated  using  Fou- 
rier  transforms.  The  algorithm was iterated  for 
10 generations,  starting from a Gaussian  with 
variance V, = V,. The  variance  changed  little 
after  the  first 5 generations, so the  generation 
10 values are assumed to be  near  equilibrium. 
The  dashed  curve  assumes a Gaussian  distri- 

0 0.1 0.2 0.3 0.4 0.5 0.6 bution  and  the  dotted  curve assumes a fourth- 

>" 
2 -  

1 

0 " ~ ~ ~ " " ' ~ ~ " ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ' ~ '  

S order Gram-Charlier  expansion.  Graphs band 
s = 0.3 

C 
s = 0.5 c show the  distribution  for s = 0.3 and s = 0.5, 

calculated  using  Fourier  transforms  (solid 
curves),  together  with  the  graph of fitness as a 
fimction  of  breeding  value  (dashed  curves).  The 
fitness of individuals  with  phenotype  xis W( x) = 
exp(-s(x- 8)*/2) +exp(-s(x+ O)2/2),where 
8 = 4; the  environmental  variance is V, = 1, and 
the  genic  variance is V& = 1. 

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 

Gaussian to a distinctly non-Gaussian distribution; for 
0 = 4 and = V, = 1, the transition occurs around 
s = 0.4. However,  even though  the distribution is far 
from Gaussian, the variance predicted assuming a Gaus- 
sian distribution [cJ BULMER (1980, Ch. 9)] is close to 
that calculated using the Fourier transform (dashed us. 
solid line in Figure 3a). Surprisingly, the Gram-Charlier 
method  does  not  much improve the fit: adding a fourth- 
order term makes little difference  (dotted line in Figure 
3a). Higher order Gram-Charlier calculations are intrac- 
table. Thus, even when selection maintains a substan- 
tially non-Gaussian distribution,  the Gaussian approxi- 
mation for  the variance is quite  good, and including 
further  cumulants  does  not  much improve it. An alter- 
native, populationgenetic analysis  of disruptive selec- 
tion is presented below. 

Our analysis  of disruptive selection is fundamentally 
different  from FELSENSTEIN'S. We are  concerned with the 
short-term changes in the distribution caused by linkage 
disequilibria, and take the genic variance (contributed 
by heterozygosity at individual loci) to  be fixed. On a 
longer time scale, we expect  that if selection is strong 
enough,  the  genic variance will increase until it a p  
proaches  the equilibrium identified by FELSENSTEIN 
(1979): V, = e* - (1 + sV,) /s .  This is the  pointwhere 
selection does not alter  the variance (in terms of the 
selection gradient  notation  introduced below this cor- 
responds  to %* = 0) .  The stability  of the equilibrium 
depends  on  the details of the genetics, and  on  the de- 
gree of frequency-dependent selection; further analysis 
is needed  to confirm our intuition  that equilibrium will 
be reached when Z2 = 0. 
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GENETIC ANALYSIS 

A full description of the dynamics  of the allele fre- 
quencies and linkage disequilibria that  determine  the 
distribution of the trait is more complicated than these 
statistical  analyses. Our approach is based on WRIGHT'S 
(1935) formula, in which the  change in gamete  frequen- 
cies caused by selection is exactly proportional to the 
gradient of  log mean fitnesswith respect to those gamete 
frequencies. BARTON and TURELLI (1987) showed  how 
Wright's equation could be rewritten in terms of any 
other description of the population-for example, the 
mean and  central  moments of the genotypic  distri- 
bution.  Since this rotation of coordinates is in general 
nonlinear,  it is accurate only to  first order  in selection. 
TURELLI and BARTON (1990) used this method to  ap- 
proximate  the joint effects of weak selection with re- 
combination, and BARTON and TURELLI (1991, Equa- 
tion 22) showed how the exact  equations  under  strong 
selection  can  be  derived  from the first-order  expres- 
sions valid for weak selection. The  latter  paper  de- 
scribed  selection by representing  the individual  rela- 
tive fitness ( W / w  as a polynomial. Here, however, 
we describe  selection in terms of gradients  in  mean 
fitness. 

Describing  the population in  terms of cumulants 
Our  treatment below differs from our previous analyses 
mainly in that we describe the  population in terms of 
multilocus cumulants, K, rather  than  the mean  m and 
the central  moments C. This approach was applied by 
BURGER (1991), in his analysis of  weak selection on a 
continuum-of-alleles;  he also introduced  the use of a 
generating  function to calculate the selection  equa- 
tions. We extend BURGER'S results first by allowing for 
strong  selection of arbitrary form,  and  second by al- 
lowing for  linkage  disequilibria among  an arbitrary 
number of loci. 

The cumulants are  a set of parameters that describe 
the  shape of a probability distribution. The first three 
equal  the  mean,  the variance, and the  third  central mo- 
ment, while the  higher  cumulants  are polynomial func- 
tions of the moments. All cumulants have the conve- 
nient additivity properties of the  mean and the variance 
(see Equation 12 below). This is particularly useful in 
analyzing additive polygenic traits: for example, the gra- 
dients of log mean fitness with respect to  the cumulants 
of effects at individual loci are  the same as the  gradients 
with respect to the cumulants of the overall trait disui- 
bution. Expressions for the response of the cumulants 
to selection also simplify the  equations for arbitrary mul- 
tilocus selection. Afurther advantage is that  for  a  normal 
distribution,  the  third and higher-order cumulants are 
all zero. We therefore expect that if the trait is normally 
distributed, its response to selection can be explained 
solely  in terms of the selection gradients with respect to 
the mean and variance. 

Cumulants bring two disadvantages. First,  while the 
first-order expressions for the response of the non- 

central  moments  to selection are exact and apply for 
arbitrary selection strength, those for the cumulants are 
not.  Second,  the effects  of recombination are most natu- 
rally described in terms of the moments (TURELLI and 
BARTON 1990). However, it is easy to move between these 
alternative representations. We therefore use cumulants 
to describe selection, but follow changes of the moments 
under selection and recombination,  then convert these 
to  changes in the cumulants. 

For a  single random variable X ,  the  relations be- 
tween the  cumulants, Ki, and  the first few moments, 
m = E [ X J  and C, = E [ ( X -  m ) ' ] ,  are 

K, = m, @a) 

ti; = C2, (8b) 

1"5 = C37 (8c) 

and I(4 = C, - 3c;. (8d) 

The general  definition is best given in terms of the 
moment  generating  function.  Let CT = E( X % )  denote 
the ith non-central  moment. For probability density 
f (x ) ,  the  moment  generating  function is 

f ( 4  = I-1 exp(xi)j(x) dx, (9a) 

and 

(The  moment  generating  function is equivalent  to the 
Fourier  transform: f (  2) = f(- i 2 ) f i . )  The cumu- 
lants  are given by the derivatives of the  cumulant gen- 
erating  function, K( 2 ) ,  which is just  the  natural log of 
the  moment  generating  function, i.e. 

K(2) = lnV(i)]  (loa) 

and 

The multivariate cumulants are  defined in the same 
way (STUART and Om 1987, Ch. 3).  Now, X is a  random 
vector with probability density f (x).  The  moment gen- 
erating  function is 

f (2)  = J-:exp(x.i)f(x) dx 

(114 
with x ir = x x, ii, 

1 

and 

where C: = E(Xu) and X, = Xi. 

Here, a u ' f / d f ,  denotes  the partial differential with 

iE U 
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respect to  the variables ii in the set U (see Table 1) ; and 
C t  denotes  the  expectation ( E )  with respect to f(x) 
across a set of indices. For example, C t n  = C:jk = E 
( g $ X k )  = a4j(0)/ax@+Jxk. As before,  the multivariate 
cumulants  are given by the derivatives  of the  cumulant 
generating  function, K(%),  with 

~ ( 2 )  = ln[f(%)] (124 

and 

As noted above, cumulants have a convenient addi- 
tivity property. Suppose that Z = z, Xi, where ( X l ,  X,, 
X,, . . .) has multivariate cumulants  denoted K ~ ~ ,  etc. 
Then Kj, thejth cumulant of the sum Z, is  simply related 
to  the multivariate cumulants by 

5 = x Ku, (12c) 
U: I UI = j  

where I UI denotes the number of elements in the set U 
For instance, if 2 = X, + X,, 1y2 = K~~ + K ~ ,  + 2 ~ , ,  (since 
K~~ = K , ~ ) .  Equation 12c  follows from the fact that the uni- 
variate moment generating hnctionL(2) for Zisjust&(i, 
2, . . , , i )  , where denotes the multivariate moment gen- 
erating hnction for X. However, we stress that our general 
treatment does not assume  additivity  of genetic effects. 

We  will be concerned with the distribution of docus 
diploid genotypes,f(x, x*).  Here, x is a vector  labeling the 
alleles  derived from the mother, and x* the corresponding 
vector for alleles from the father. With random mating, x 
and x* are independent in zygotes; but, selection  usually 
generates deviations  from  multilocus  Hardy-Weinberg 
proportions, necessitating  analysis  of the joint distribution 
f(x, x*). However, for compactness, we  will set out the 
methods in  terms of a single  vector x, which we take to 
include the states  of the full diploid genotype. The expan- 
sion to diploid notation is  trivial, as indicated in the final 
equations below (see 19). 

The multilocus cumulants defined by Equations 11 and 
12 are a new measure of deviation from linkage equilib 
rium. When more than three loci are involved,  they are 
distinct  from  those  based on the cross-locus moments de- 
fined by SLATKIN  (1972,  Equation 6) and used  in our pre- 
vious papers. They are also  distinct from BENNETT’S (1954) 
principal components, which  were defined so as to decline 
geometrically  in the absence of selection. Though cumu- 
lants are more convenient for analyzing  selection,  they are 
less so for recombination. To see  this,  consider K $  the 
four-locus cumulant after recombination alone. (In terms 
of central moments, denoted c, (12) implies that KYkl = 
GIN - GjCu - C-,C,, - C,,qk, where Cy denotes the covari- 
ance of allelic  effects  between  loci i and j.) For  simplicity, 
we assume that selection  has generated no associations  be- 
tween  paternally and maternally  derived  loci, so that 
G,” = 0 if Uand Vare nonempty sets. As in BARTON and 
TURELLI (1991), we define rs,T for nonoverlapping sets of 
indices Sand T as the probability of recombination events 

that bring together paternally  derived  alleles  from the loci 
in S with maternally  derived  alleles from the loci  in  simi- 
larly, rN+ is the frequency of gametes that are “non-recom- 
binant”with respect  to  all  loci in N By converting to central 
moments, it is easy to show that 

~ * e u  = T Y M ~ K ~ ~  + (qje0 + qj,u - ~ J , ~ ~ U D ) K ~ K M  

+ (TIkl,klQ + ‘ t j l -  r&0510)KikKjl (13) 

+ (qjkl,0 + %jk - ql,O~k,@)KdKj~‘ 

Here, T ~ , ~  1 - qI, where qY is the recombination rate 
between  loci i and j .  The factor ( + qj, kl - rg:pirU 0)  is 
a measure of association  between the pair of loci { i j ]  and 
the pair {kl};  it is zero if the event that { i j ]  stay together is 
independent of the event that (k l}  stay together. That will 
be true if the pairs do  not overlap on the Same chromo- 
some (e.&, if they are in the order (i, j, k, I) but not 
( i, k, j, I) ) . Only if all the loci are unlinked will the cumu- 
lant measures of disequilibrium  be  identical with those of 
BENNETT (1954). 

Response to strong selection: The exact change in 
genotype frequencies caused by selection is 

with 

G[x; yl = f(X)[S(X - Y) - fW1, (14b) 

where S(x - y) is the Dirac delta  function and W = 
f (x)  W(x) dx (see Equations 2.2 and 2.3  of  TIJRELLI and 
BARTON 1990). With discrete alleles, the integral in (14a) 
would be replaced by a sum and the Dirac delta in (14b) 
would be replaced by the Kronecker delta. The crucial 
step is to describe the  population in terms of the mo- 
ment  generating function](%) rather  than  the genotype 
frequencies. Using the transformation methods de- 
scribed by Equations 2.4 and 2.5  of TURELLI and BARTON 
(1990), we find that, because](%) is a linear function of 
f (x)  (see Equation 9),  

with 

Because the relation between the  moment  and cu- 
mulant  generating functions is not linear,  the expres 
sion corresponding  to  (15) for the  change in the cu- 
mulant  generating  function is accurate only to first 
order in the selection gradients  (denoted by 2 below). 
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Because recombination produces  a linear mixture of 
probability densities, its effects are simplest to describe 
for statistics that depend linearly on  the density. Thus, 
we will describe the effects  of selection and recombina- 
tion on moments  rather  than cumulants. However,  be- 
cause of the additivity property (1 2), it is simpler to work 
with selection gradients  defined in terms of the cumu- 
lants, rather  than  the  moments (see Appendix 1 of 
TURELLI and BARTON 1990). To achieve this, we replace 

The resulting expression for the  moments is exact, but 
is somewhat  less elegant than the analogous  (first order) 
equation for cumulants (Bl) , since  it  involves an asymmet- 
ric  ma& @. In terms of generating functions, we  have 

a In(W)/af(j;> in (154 by [a ln(iir)/aK(j;)l[aK(9)/a~(j;)l. 

with 

= exp[K(f + j;) - K@)] - exp[K(k)]. 
As explained below, the matrix G* that gives the re- 

sponse of particular non-central moments C$ to selec- 
tion gradients on particular multilocus cumulants, de- 
noted K~ can be  found by differentiating the  generating 
function 6*[x 91 to  produce 

A,c% = E@[Q VI (1 7 4  
V 

where 

Here, A, C?, is obtained from A j ( f )  by simply  diEeren- 
tiating with respect to f, ( i .   e . ,  with respect to xi for all 
loci i E U )  and evaluating the result at f = 0. It is  less 
obvious that  the effect of selection on particular cumu- 
lants, 2&, is obtained by differentiating with respect to 
Pv This can  be verified by working backward from (17a) : 

The sum over  all V gives a Taylor series in w ,  hence, 
(18b) can be written as 

From (1 lb),  we see that (18c) reproduces  (16a),  and so 
verifies Equation 17. 

The expressions  for G* become  complicated  for the 
higher  cumulants;  for  example, G* [ ( z ,  j ,  k, 4; {m, n, o, 
p } ]  involves 339 terms. However, Equations 16  and  17 
give a  compact  algorithm that can readily be  auto- 
mated, using  a symbolic language such as Muthemuticu 
(WOLFRAM  1991). (A description of the  routines used 
to perform  these  calculations as  well  as Muthemuticu 
notebooks  for  the Macintosh that  implement  them 
are available upon request.) The expression  for  changes 
in the cross-locus moments is  essentially the same.  It is o b  
tained by replacing f by (f, f*) and j ;  by (j;, y ) ,  which 
produces 

ACC$,, = C@[U, V S, 71 2s,,r 

d In( W) 
where = ___ 

aK,7  ' 

and 

Equation 19 gives the response of the moments to 
selection on the cumulants. BURGER (1991, Equations 
4.4b and 4.6) gives  closely related expressions for the 
change in cumulants, which are also derived from a gen- 
erating  function. His results differ in that they are ex- 
pressed in terms of the coefficients of a Taylor series 
expansion of the fitness as a function of breeding value 
(his Equation 3 .5 ) ,  rather  than selection gradients. His 
results also neglect linkage disequilibrium, and so are 
the sum of a set of single-locus  analyses. Our equations 
are essentially an extension of his analysis to arbitrary 
multilocus systems and to  strong selection. 

Allowing for recombination: The exact effects of 
strong selection on the non-central moments are given 
by Equation 19. This equation makes no assumptions 
about  the  mapping of genotypes onto phenotypes. It 
requires only that  the distribution of genotypes can be 
specified in terms of moments. As discussed in BARTON 
and TURELLI (1991), this is straightforward for diallelic 
loci or models with  additive  allelic  effects. Recombina- 
tion is then dealt with using Equations 14 and  15 of 
BARTON and TURELLI (1991). Finally, the non-central mo- 
ments after selection and recombination are used to cal- 
culate the new cumulants. This  rather complex algo- 
rithm is justified because cumulants are  a  natural way to 
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describe  deviations  from  normality, and they  simplify 
the characterization of the distributions of breeding val- 
ues and phenotypes under the additive  model. 

Calculating the  selection  gradients  under an additive 
model: We  will  now restrict attention to a simple ad- 
ditive model for polygenic inheritance. Letting Z de- 
note  the phenotype of a randomly chosen individual, 
we assume 

n 

Z = ( X ,  + X:) + 8 G +  8, (20) 
I= 1 

where Xi(Xy)  denotes  the additive contribution of the 
maternally (paternally)  inherited allele at autosomal 
locus i, G denotes  the total genetic contribution,  and 
8 denotes  a  random, Gaussian-distributed environ- 
mental effect with mean 0 and variance V,, which  is 
independent of G. Under this model, I$, the jth cu- 
mulant of the distribution of phenotypes, is the sum 
of the  jth  order cumulants across  all  sets ofjloci (plus 
V, for  the second cumulant)  (see Equation 12). 
Hence,  the selection gradient with respect to any cu- 
mulant involving j loci is the same as the selection 
gradient with respect to the jth cumulant of the ge- 
notypic (or phenotypic) distribution. In particular, 
the terms 2esT in Equation 19a reduce to Yj  = 
a In( I%‘)/aK, with j = I S + TI, the total number of 
indices in the sets Sand T. (This  reduction occurs with 
any distribution of environmental deviations, %, as 
long as 8 is independent of G.) We  now describe how 
these genotypic gradients can be calculated. 

We first find how the distribution of phenotypes, f (x), 
depends on K,. The Fourier  transform of a distribution, 
f (Equation 6b), is equivalent  to  its moment generating 
function, f (Equation 8a), which  in turn can  be  written 
as a Taylor  series  in the cumulants  (Equation 9), i e . ,  

Hence, 

Taking the inverse  Fourier  transform (Equation 6c)  of 
Equation 22, 

This  simple  relation  can now  be  used to  find the selec- 
tion gradient, 

W j !  dxJ 
dx. 

This  can be interpreted in two ways.  First, consider 
how the mean  fitness  changes  when the distribution 
is translated by T, so that f (x) becomes f (x  - r ) ,  and 
af/ax = -af/ar. Setting 

we  have 

Thus, the selection gradient with respect  to the jth cu- 
mulant is proportional to the jth differential of the log 
mean  fitness  with  respect  to  translation of the distribu- 
tion. Another relation  can  be found by integrating Equa- 
tion 24  by parts j times: 

Thus, the selection gradient Zei is also proportional to 
the expectation of the jth differential of the relative  fit- 
ness.  Note that (25b) and (26) are generalizations of the 
formulas  provided by LANDE (1976) and LANDE and 
ARNOLD (1983) for the “directional  selection gradient,” 
p = a In( F;i3/aZ, calculated under the assumption that 
the distribution of phenotypes  remains  precisely  Gaus- 
sian (so that 7 is just 2). In  this  case, 2, = p. Similarly, 
i f f ( x )  is Gaussian,  Equation 26 implies that Z2 = y/2, 
where y is the univariate  version of the “stabilizing  se- 
lection gradient” defined by LANDE and ARNOLD (1983, 
Equation  14b; c$ MITCHELL-OLDS and SHAW 1987). 

Approximating the  selection  gradients: Calculations 
for specific  models are simplified if one can  characterize 
the distribution of breeding values (at least  approxi- 
mately)  in  terms  of a finite  set of cumulants.  This  can 
always be done  for  a finite number of loci and alleles.  For 
example, with  biallelic  loci, the distribution ofgenotypes 
is completely  characterized by cross-locus  cumulants  in- 
volving distinct  loci ( K ~ ~ ~ ,  etc.) and the allele  frequencies 
(Equation 5 in BARTON and TURELLJ 1991). If the distri- 
bution of breeding values  is approximated by some  class 
of density  functions,  such as the Gram-Charlier, the se- 
lection gradients can  be approximated using  Equation 
26.  For densities  in which the cumulants appear as 
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parameters, one can also approximate  the Ti “para- 
metrically” by first differentiating the density with re- 
spect to  the  cumulant  then  integrating. This will not 
generally give the same result as Equation 26, because as 
the lower cumulants vary, the  higher cumulants change 
with them, in a way that  depends on the class  of  distri- 
butions considered. For  small departures from normal- 
ity, we  will  show that  the Tj can be well approximated 
from Equation 26 assuming that f (x) is Gaussian. 

Another  approach is to derive the selection gradients 
from a polynomial approximation to the fitness func- 
tion. This is the  method used by BARTON and TURELLI 
(1991);  there was a slight error in the relation between 
the polynomial coefficients and the  gradients given in 
AppendixA of that article, which is corrected in APPENDIX 

A below. This polynomial approximation is also related 
to BURGER’S (1991) Taylor series expansion of fitness. If 
the genotypic (or phenotypic) fitness function is a poly- 
nomial, we can directly express the mean fitness as a 
function of the cumulants of the  distribution,  then dif- 
ferentiate to obtain the Tt. For instance, if the genotypic 
fitness function is the  quartic, 

W(x) = 1 + b l x +  b,? + b 3 2  + b4x4, (27) 

then 

W =  W(Z) + VJb, + 3b3Z-t 6b4-P) 
(28) 

+ K3(b3 + 4b‘Z) + b4(K4 + 3v-3 

= + V,(3b3 + 12b4Z) + 4b4K3, (29a) 

WT3 = b3 + 4b4Z, 

and 

m4 =b4 

Note that if we were working with central  moments 
rather than cumulants, the partial  derivative of In( W )  with 
respect to the second moment would  differ  from (29b) 
because the coefficient  of b4 in (28) would be simply C, = 
E[ (2  - a‘], and hence would not contribute. 

If W( x) is not a polynomial, it will generally not be 
possible to calculate the Ti exactly without assuming a 
distribution of breeding values.  However,  many  selec- 
tion regimes, including  truncation selection, can be ad- 
equately approximated by a quartic over a range of geno- 
types that includes most  of the  population; so that Ti for 
i = 1-4 often  suffke  for  approximating  the dynamics. 
According to the Gaussian infinitesimal model, %l and 
9, suffice. We  will use a fourth-order description to ap- 
proximate the multilocus effects  of truncation selection. 
We  will show that under truncation selection, and pre- 
sumably most forms of directional and stabilizing  selec- 
tion,  the cumulative effects of third- and higher-order 
disequilibria are negligible. This is not  true, however, for 

strong disruptive selection. 
Several criteria are possible for  approximating  an ar- 

bitrary fitness scheme by a polynomial, such as  mini- 
mizing the “distance” between the exact and approxi- 
mate fitness functions. To predict selection response, 
however, it seems more  natural to approximate the dis- 
tortion of the distribution of breeding values or phe- 
notypes. This is most  easily accomplished by considering 
how selection alters the non-central moments. LetCT 
denote  the  ith  non-central  moment before selection, 
and let C.* denote its  value after selection. If the fitness 
function is 

n 

W(x) = bp’,  with bo = 1, (30) 
i = O  

then 
n n 

W= xbiCT and Wc* = $CT+j. (31) 
i=O j =  0 

Hence if we know  how a selection regime changes 
the  noncentral moments, we can use (31) to  find a poly- 
nomial of order n that  produces  the same changes in the 
first n moments (and cumulants). Let A,CT = CT“ 
C$ b = ( b l ,  bz, . . . , b,)T, and A,C* = 
(A,CT, A,C$, . . . , A,C;)’, and define the n X n matrix 
A = ( aii) by aij = CT+j - CFy* (the superscript Tdenotes 
transpose). Then  the coeffkients of the approximating 
polynomial are 

Under  the Gaussian infinitesimal model, changes in 
the first two moments completely characterize the se- 
lection regime, so a quadratic approximation suffices,  as 
noted by LANDE and ARNOLD (1983). For  non-Gaussian 
distributions, changes in the  higher moments are also 
relevant. These may be estimated empirically. In gen- 
eral, however, one must know the initial distribution of 
breeding values to predict  the effects  of a given W( x). 
Because truncation selection produces only  small de- 
partures from normality, it suffices (as shown numeri- 
cally  below) to consider how selection alters the distri- 
bution assuming that  it is initially  Gaussian. If only 
individuals with phenotypes 2 > t survive, the genotypic 
fitness function is 

(33) 

where @(x) is the cumulative  normal density and a, 
is the  environmental  standard  deviation. Assuming 
the  current mean of the  population is 2 and its phe- 
notypic standard deviation is a, let p denote  the frac- 
tion of the  population  that survives truncation selec- 
tion,  let t* = ( t  - Z)/a, denote  the normalized 
truncation  point,  and  let I( p )  = exp[-(t*)‘/2]/ 
(p-) denote  the “selection  intensity” (FALCONER 
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FIGURE 4.-Comparison  of the third-order (dashed line) 
and fourth-order approximations (open symbols) obtained 
from (32) to the exact truncation fitness function (33) with the 
fraction selected, p ,  equal to  0.2 and 0.8 with V, = V, = 1. 

1989,  Ch. 11). Applying Equation 26 under  the as- 
sumption  that  the  distribution of breeding values is 
Gaussian, we obtain 

for i = 1 , 2 , .  . . , 
where E denotes  expectation with respect  to  a  stan- 
dardized  normal  density, Hi denotes  the ith Hermite 
polynomial, h = crJa,is the  square  root of the heri- 
tability, and t̂  = -fa,/a,. The first four Yi are 

and 

Z1 and LEz are  identical  to  the  "parametric" values ob- 
tained by differentiating with respect  to  the  param- 
eters of the Gaussian density. The fitness  gradients 
(34b)  are  identical to  those  obtained  from  the poly- 
nomial  approximations  (32)  under  the assumption 

h i  = K ~ .  2l + K ~ . .  2z + K, ... 33 + K, .... Z4, 
A K ~  = A K ~  - A K ~ A K ~ ,  

- 0 . 5 ~ ~ " ' ~ " ~ ~ " " " " "  
0 0.2 0.4 0.6 0.8 1 

p, fraction selected 

FIGURE 5.-The dimensionless  selection gradients, V? for 
i = 1-4, obtained from (32) and (34) with p ranging from  0.05 
to  0.99. 

that  the  distribution of breeding values is Gaussian. 
[In  general, if the initial  distribution is Gaussian, both 
(24) and  the polynomial  scheme  (32)  lead  to the gen- 
eral  expressions  provided below for  the 2i, see (44) 
and  (48).] 

Figure 4 displays the close fit of the  fourth-order ap- 
proximations obtained  from (32) to  the exact trunca- 
tion fitness function  (33) with p = 0.2 and 0.8 and V, = 
V, = 1. The polynomial approximations are multiplied 
by a  constant  to  produce  the  correct  The  quartic 
approximation is very accurate for all breeding values 
within three  standard deviations of the  mean,  but  the 
cubic approximation is much  cruder.  The dimensionless 
selection gradients, V$z3ifor i = 1-4, obtainedfkom (32) 
and  (34),  are displayed  in  Figure 5 with p ranging horn 
0.05 to 0.99.  Note that the third- and fourtha-der gradi- 
ents are much  smaller than the first two. 

Exact  recursions  for  the cumulants: Applying the se- 
lection and recombination machinery to  an additive 
polygenic character, we find that  the complete recur- 
sions up to 24 ( i. e . ,  assuming that 2i = 0 for i ? 5 )  for 
the means ( K ~ ) ,  covariances ( K ~ ~ ) ,  and third-order cu- 
mulants ( K ~ ~ )  across  loci are 
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Here A denotes the change in the cumulants that would be observed if selection  were so weak that products of the Zei could 
be ignored; and rN= 1 - rNg denotes the frequencywith which recombination disrupts the loci in the set N (  i.e., the fraction 
of gametes that are not parental haplotypes at these loci). In each equation, we have indicated sums  over a particular 
subscript by ‘‘-” (e.g., K ~ . .  = xi,, K ~ J .  Equation 39  is abbreviated by using “. . .” to denote the two additional terms  in each 
sum obtained by permuting the subscripts i, j ,  and k in the first  term. 

The expression for  the  fourth-order disequilibrium is more cumbersome. In  general, 

AK~,,  = A K ~ , ,  - [ A K ~ ( A K ~ ~  + 3hl~jk l )  + 3 similar terms] - [ ( A K ~  + Y~KJ(AK, ,  + r,,~,,) + 2 similar terms] 
(40) 

+ ~ [ A K ~ A K ~ ( A K ~ ,  + r, ,~, ,)  + 5 similar terms] - ~ A K ~ A U , A K ~ A K ~ ,  

where the “similar terms” are  generated by permuting  the indices. The general form of A K ~ ~ ,  is unwieldy, so we  will 
restrict attention  to exchangeable, unlinked loci ( L e . ,  unlinked loci  with equal effects on the  character and identical 
allele frequencies). In this case, for distinct i, j ,  k and 1, 

7 
A K q k ,  = - sK+ + i K q k l . 3 1  1 + (;K%. f 2Ki.Kqk. + ;K+..)%z + ( I~K: .K~.  + i K p K q . .  f 3Ki..Kq,. + 3Ki.Kqk.. + ;Kvkl...)%3 

(41) 
+ (24~:. + 7 2 ~ ~ .  Ki.. Kq. + 36~:. Kq.. + 5 K i . .  + 4K j . . .  Kqk. + 6Kq.  KY.. + 6Ki.. Kqk.. + 4Ki. Kqk... + gKqkl .... )x4. 9 1 

These recursions were checked by numerical multilocus calculations as described below. If the fitness function is a 
fourth-order polynomial, they are exact. If the fitness function is more complex, additional terms involving xi for 
i 2 5 appear. Nevertheless, Equations 35-41  will often provide a very accurate approximation for selection response, 
as demonstrated below for truncation selection. 

Departures from normality at the infinitesimal limik To predict  the deviation from normality under strong se- 
lection, we add  the recursions (35)-(41) across loci to produce recursions for  the  cumulants of the distribution of 
breeding values. Under  the additive model,  departures  from normality arise from linkage disequilibrium and from 
the fact that only a finite number of  loci contribute  to  the trait (BULMER 1980, Ch. 8; BARTON and TURELLI 1989). At 
linkage equilibrium, the  central limit theorem implies that, under suitable restrictions on the relative contributions 
of individual loci, the distribution of breeding values will become Gaussian  as the  number of  loci approaches infinity. 
For a finite number of loci, the distribution will not be Gaussian if the distributions of  allelic  effects at individual loci 
are non-Gaussian. To disentangle the roles of disequilibria and  the distributions of  allelic  effects, we  will first consider 
the simpler case in which a very large number of  loci  with comparable effects contribute to the trait. As discussed 
by TURELLI and BARTON (1990) and derived in greater generality in APPENDIX B, in the infinitesimal limit only terms 
of the  form K~ in which the set U contains k distinct indices contribute to the kth-order cumulant for k 2 3. Using 
this and assuming unlinked loci, Equations 35,36  and 38 imply the following recursions, complete to T4, for the mean 
phenotype and  the genetic variance: 

AVG = $VG,m - VG) + $& + (v‘, + $,)%, + (3VGK3 + $5)%s + ( 3 g  + 4VGK4 + $$f4 - (43) 

where Ki denotes  the ith cumulant of the distribution of breeding values and VG,, denotes  the “genic variance” 
( 2 x  K J  which remains constant. 

If the distribution of breeding values is Gaussian, Kj  = 0 for i 2 3. Applying Equation 24 to the phenotypic fitness 
function, we see that 

A,Z As Vp + (AsZ)2 

VP 2vp . 
g =- and g2 = (44) 

Thus,  (42)  reduces  to  the  standard selection  response equation,  (1);  and  (43)  reduces to BULMER’S 

(197l)equation 

A VG = $h4As Vp + 5( V,, - VG). 
1 (45) 

To abbreviate the exact  expression, up to X4, for AK3, let O(%) denote  the terms  in  (43) proportional 
to Zj (i.e., omit  the first  expression, which is independent of 2, and  the last expression, which involves z2), 
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FIGURE 6.-Consequences of continued  truncation  selection  under  the  infinitesimal  model.  Graph (a) presents  approximations 
for the  equilibrium skew for  various p with h2 = 0.5, using (34) for  the  selection  gradients.  The  “linear”  approximation is (49), 
and it is indistinguishable from the  “complete”  approximation.  Graph (b) presents  analogous  approximations  for  kurtosis.  See 
text  for details. 

then 

AK3 = - iK3 + i K 4 g l  + (qVGK3 + :K5)Z2 i- [iV: + !(e + VGK4) + ;K6]T3 
( 4 6 )  

+ ( 9 G K 3  + y K 3 K ,  + 3VGK5 + fK , )2 ,  - $0(2?) terms  from AVJAZ + !(AZ)’. 

Similarly, we can  abbreviate the exact  expression, up to 2,, for AK4 as 

A partial consistency check on these recursions is obtained by assuming that  the distribution of G is initially  Gaussian. 
In this case, Ki = 0 for i 2 3, 2, and 5 f 2  are given by ( 4 4 ) ,  

AsK3,p + 3A,VpAsZ + (A,Z)’ 
23 = 6  V:   (484 

and 
AsK4,p + 3(A,Vp)2 + 4A,K3,,A,Z + 6A,Vp(A,Z)2 + (A,Z)4 

24 V; 
g4 = , 

where Kz,p denotes  the  ith  cumulant of the phenotypic distribution. It follows from ( 4 6 ) ,   ( 4 7 )  and (48 )  that AK3 = 
h6A,K3,p/4 and AK, = haA,K,,p/8, as expected. 

Truncation selection: Recursions ( 4 2 ) ,   ( 4 3 ) ,   ( 4 6 )  and (47 )  are generally difficult to apply, because each AKi 
depends on higher-order cumulants. Thus, no “closed” system  of equations can be  obtained without assumptions. The 
simplest generalization of the Gaussian infinitesimal model is to assume that  cumulants of order k 2 3 can  be 
adequately approximated by ignoring  cumulants of  still higher  order. This is  likely to  be accurate only if the cumulants 
form a decreasing sequence. The consistency of this assumption can  be checked by applying it successively to each 
K,. We  will show that  it provides accurate approximations for  truncation selection, but fails for strong disruptive 
selection. According to this scheme,  the steady-state  value  of K3 under continued selection can be  approximated by 
solving AK3 = 0 with K, = 0 for i 2 4 .  Figure 6a shows the resulting prediction  for K3 under continued  truncation 
selection with h2 = 0.5, using (34 )  to approximate  the selection gradients. The predicted values are sufficiently  small 
to be very accurately obtained by ignoring terms involving Ki for i 2 2. This simple approximation yields 
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which generalizes the weak selection  result of TURELLI 
and BARTON (1990),  obtained by ignoring X< for 
j 2  2. 

Based on  our weak-selection approximation, which in- 
volved  only 2,, we had  conjectured  that  strong selection 
might  produce considerable skew. However,  as demon- 
strated  for  truncation selection, the  additional terms in 
(49) effectively cancel the  contribution  from 2, alone. 
As shown  in Figure 6a, approximation  (49) agrees ex- 
tremely  well  with the Gram-Charlier statistical predic- 
tion. Given that these predictions are based on very  dif- 
ferent  methods and assumptions, we expect  that they 
accurately reflect the behavior of the infinitesimal 
model. Additional support comes from our finite-locus 
numerical results below. 

A separate problem from  determining  the  number of 
cumulants needed  to accurately approximate the skew 
is determining  the  number of selection gradients 
needed.  In  the Gaussian infinitesimal model, the vari- 
ance recursion depends on only the variance, XI and X*. 
By analogy, one might  expect  that Z,,  . Y 2  and 23 suffice 
to  predict K,, at least when it is small. Figure 6a shows 
that  although  ignoring 2, leads to only a small absolute 
error, it produces a large relative error.  Hence,  although 
higher-order disequilibria may be  ignored in approxi- 
mating K,, its  value is significantly affected by 2,. This 
is also supported by our finite-locus calculations. Figure 
6b shows the analogous results for K4. Essentially iden- 
tical predictions are  obtained by solving sequentially for 
K3 from (46) with y = 0 for i 2 4, then  for K, from (47) 
with Ki = 0 for i 2 5, versus  solving for both K3 and K, 
simultaneously from  (46) and  (47).  The  predicted val- 
ues of K ,  are all extremely small, but  the  agreement with 
the Gram-Charlier predictions is much  poorer  than  for 
K,. The significant dependence of K, on X,, illustrated 
in Figure 6a, suggests that  higher order .2Zt  may be 
needed to accurately estimate these very small  levels  of 
kurtosis.  However, as demonstrated below, these very 
small higher order cumulants  are unlikely to affect  sig- 
nificantly the response each generation  to  directional 
selection. 

To quantify the consequences of linkage disequi- 
librium-induced departures  from normality, we  will cal- 
culate the deviation of the  standard Gaussian prediction 
(1)  from  the  more  accurate  prediction  obtained  from 
(42) by including our predicted steady-state  values  of 
skew and kurtosis. The magnitude of the discrepancy is 
easiest to  understand in terms of dimensionless param- 
eters, such as the heritability and standardized cumu- 
lants and selection gradients. Let 

Ki Y , , ~  = 7 and 4 = upi, (50) 

so that y3,c is the skew of the distribution of breeding 
values, Y , , ~  is the kurtosis; and,  under truncation selec- 
tion, Zl is the "intensity" of directional selection. In this 
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FIGURE 7.-Approximations  based  on  the  infinitesimal 
model for the  percent  relative  deviation of the  Gaussian  pre- 
diction (1) from  the  exact  prediction (51) under long-term 
truncation  selection  with  various  values for h2 and p .  In these 
calculations,  the Yi are  approximated by (34). 

notation, Equation 42 becomes 

The percent relative deviation of the Gaussian predic- 
tion from (51) is  displayed in Figure 7 for  truncation 
selection with a wide range of heritabilities and selection 
intensities. In these calculations, the 2i are approxi- 
mated by (34), which  shows that  the Ii depend  on only 
the fraction of the  population selected. The very small 
deviations from  the Gaussian predictions are  produced 
almost entirely by skew. The largest contribution of  kur- 
tosis occurs with the highest heritability, but  it is no- 
ticeable only for  extreme selection intensities, Le. ,  p < 
0.1 or p > 0.9. The qualitative result is that no significant 
departures from normality are expected from third- or 
higher-order disequilibria, irrespective of the heritabil- 
ity and selection intensity. For h2 5 0.8 and p < 0.5, 
Gaussian theorywill underestimate  the response to  trun- 
cation selection by less than 2% per  generation, which 
is likely to  be far less than  the sampling error of the 
heritability estimate. 

Disruptiue selection: Under  truncation selection, our 
results indicate that  the small cumulative effect of third- 
order disequilibria can be accurately approximated by 
ignoring higher-order disequilibria. We expect this to be 
true for realistic forms of directional and stabilizing  se- 
lection. In  contrast, disruptive selection can cause sig- 
nificant departures  from normality that  are  much  more 
difficult to predict, because fourth-order cumulants can 
be very large and  their values dependent  on still higher- 
order cumulants. This will be  demonstrated with the 
"double Gaussian" disruptive fitness function (7), de- 
noted Wdg( g). As before, we  will restrict attention  to  the 
(generally unstable) symmetric equilibriawith the mean 
at 0. Because large departures from normality are 



Polygenic  Selection  Kept  Simple 929 

a b 

-Gaussian +X---Gram-Charlier 

. -0 -  -Gaussian  Mixture  (Quartic) 

“Gauss  Mix Q (w/ K, & Ke) 

.-.--Gauss Mix  (Derivatives) 

-Gauss Mix D (w/ K, 8 Ke) Observed - (100 loci 

Observed (100 loci) 

0 0.1 0.2 0.3 0.4 0.5 0.6 
s s 

FIGURE & T h e  equilibrium  genetic  variances (a) and  kurtoses (b) under disruptive  selection  predicted by four  alternative 
genetic  approximations  based  on  the  “Gaussian  mixture”  model (52) and  three  “statistical”  approximations  (Gaussian,  Gram- 
Charlier  and  Fourier  transform)  are  compared  to  numerical  results  obtained  with 100 exchangeable  loci.  The  quartic (Q) a p  
proximations  calculate  the  selection  gradients  from (32), the  “derivative” (D) approximations  calculate  the  gradients  from (24). 
The  second  set  of  observed  values  in (b) show  only  the contribution of fourth-order  linkage  disequilibria to kurtosis. 

expected, we must generalize the Gaussian-based 
approximations  for  the Yi that we applied to truncation 
selection. To illustrate the effects on non-normality, we  will 
assume that the distribution of breeding values can be a p  
proximated by a symmetric mixture of three Gaussians: 

where fN(p,v) ( g )  denotes the density  of a normal random 
variable  with mean p and variance V; The parameters 6 and 
Vare chosen to produce the appropriate variance and kur- 
tosis,  using 

6‘ 64 
2  4 Var(G,,) = V +  - and K4(GM,) = - -, (53) 

where GMix denotes a random variable  whose  density is 
(52). The form of (52) is motivated by the strongselection 
limit  discussed  when the Fourier transform method was 
applied to disruptive  selection.  More general mixtures 
than (52), with  varying proportions of each Gaussian,  pro- 
duce both positive and negative  values of K4; but we restrict 
attention to (52) because  disruptive  selection  of form 
We( g )  does not produce positive K4‘ For instance, if the 
initial distribution is  Gaussian (so that K4 = 0 and the 2?* 
can computed exactly from Equation 24), We( g )  p r e  
duces K4 < 0 in the next generation. The accuracy of ap- 
proximation (52) is discussed  below, 

Two different  methods were used to  approximate  the 
selection gradients with density (52). The first is the 
quartic  approximation (32) based on equating mo- 
ments of the distribution of breeding values before and 
after selection. The second is based on identity (24). 
When the initial distribution is Gaussian, both  methods 
produce identical gradients. They produce slightly  dif- 

ferent values  with the mixture (52). Under  our symme- 
try assumptions, K21+1 = 0 for i = 1,2,  . . . and Y l  = Y3 
= A Z  = 0, which greatly simplifies Equation 47 for AK4. 
To illustrate the effect of the  higher order cumulants on 
V, and K4, two different approximations for their equi- 
libria will be considered. First, we will set Ki = 0 for i 2 
5 in (47). This approximation  for K4 is analogous to the 
simplification we used to predict K3 under truncation 
selection. However, assuming Ki = 0 for i 2 5 when K4 
# 0 is unnatural, because (52) implies that 

I&(&,) = 4(- K4)3’‘ and &(&,) = - 34%. (54) 

[In  general, if for some io 2 3, Ki = 0 for all i 2 io, then 
all K, = 0 for i 2 3 and the distribution is Gaussian;  see 
STUART and ORD (1987, p. 152) .] Hence, our second set 
of approximations will include  the K6 and Ku specified 
by (54) in the recursions for V, and K4. The combina- 
tion of the two ways to approximate the Yi and  the pres- 
ence or absence of non-zero K6 and Ku produces  four 
alternative approximations. Figure 8a shows equilib- 
rium genetic variances predicted by these four approxi- 
mations and compares  them to the Gaussian, Gram- 
Charlier and Fourier transform approximations 
presented in Figure 2, as well  as numerical multilocus 
results discussed  below. All of the approximations agree 
for s 5 0.3. However  as the intensity of disruptive se- 
lection increases, so do the discrepancies between the 
approximations that use different  numbers of cumu- 
lants. Thus, our non-Gaussian predictions for  both  the 
genetic variance and kurtosis depend significantly on 
higher-order cumulants. Surprisingly, the Gaussian pre- 
diction (and  the indistinguishable Fourier transform 
and Gram-Charlier predictions) remains very close to 
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the  quartic  approximation involving K6 and K8 based on 
(52) ; and these four match most  closely our multilocus 
numerical results. 

The  apparent accuracy of  the Gaussian prediction  for 
the variance is made  more surprising by the  correspond- 
ing values  of kurtosis illustrated in Figure 8b. All of the 
non-Gaussian approximations (and  our numerical re- 
sults) suggest that  the distribution of breeding values 
will  have non-trivial kurtosis (y4 5 -0.3) for  strong dis- 
ruptive selection (s  2 0.4). Nevertheless, the inflation of 
the variance (the “BULMER effect,” e.g., TALLIS 1987) 
seems to  be accurately approximated by the Gaussian- 
based recursion (45).  The basis for this apparent ro- 
bustness emerges from the  more complete recursion 
(43). For the  parameters investigated, the term propor- 
tional to X2 is much larger than  the term proportional 
to z4. Hence, unless kurtosis becomes very large (e .g . ,  
I y41 2 l) ,  the primary term driving the BULMER effect 
is V‘g,, which appears  in  the Gaussian analysis and is 
apparently  reasonably  approximated by the Gaussian 
expression for 3’. Similar  quantitative  results were 
found  for  other  parameter values. Expression (43) 
suggests that  the robustness of the Gaussian BULMER- 
effect prediction is likely to extend to other  forms of 
selection that  produce significant departures  from 
normality. 

Numerical results and approximations for finite num- 
bers of lock We  will present numerical results from mul- 
tilocus gamete-frequency recursions that check our re- 
cursions for the  cumulants and explore  the accuracy  of 
various approximations for  the selection gradients and 
linkage disequilibria. Two separate computer programs 
were used. One performs numerical iterations  for  the 
genotype frequencies of up to 10 linked, diallelic loci, 
with arbitrary recombination rates between adjacent loci 
(assuming no interference) and additive allelic  effects 
+ai /2  at  the ith locus. This  program imposes no con- 
straints on  the allele frequencies (see TURELLI and 
BARTON 1990). For n loci, the state of the  population is 
completely characterized by n allele frequencies (by 
convention, we give the “+” allele frequency) and all 
disequilibria up to order n involving  sets  of distinct loci. 
Central  moments (and cumulants) involving repeated 
indices can be expressed in terms of these variables by 
using the  reduction formula: 

Cu+ii = C&, - 2miCu,,, (554 

where mi denotes  the average  allelic effect at locus i .  The 
second program, described in BARTON (1992), assumes 
that  the loci are “exchangeable,” meaning  that they are 
unlinked and have equal allele frequencies  and additive 
effects. The alleles  have  effects 1 and 0. The symmetry 
allows for calculations involving up to 100 loci.  For n 
loci, the state of this population is completely charac- 
terized by n variables, the frequency of allele “1” (iden- 
tical for each locus),  and  a single kth-order disequilib- 

rium value for each K = 2, 3, . . . , n. For this model, 
central moments involving repeated indices can be 
reduced using 

G + i i  = PiqiG - (Bpi - l)CU+i? (55b) 

where p, denotes  the frequency of the “1” allele at locus 
i (see (AS) in BARTON 1986). To check our recursions for 
the first four cumulants, we applied quartic selection 
and  then used the numerically observed  values  of the 
first eight cumulants in the  current  generation  to pre- 
dict the values  of the first four cumulants in the  next 
generation. No discrepancies larger than expected from 
round-off error were observed. [Numerical checks on 
the recursions for  the means and covariances are de- 
scribed in  TURELLI and BARTON (1990) .] 

Disruptive  selection: We  will first discuss the multilo- 
cus results for disruptive selection presented in Figure 
8. These  approximate  equilibrium values  were obtained 
by iterating  the exchangeable-loci recursions starting 
from the unstable equilibrium with allele frequency 0.5 
at all loci and global linkage equilibrium. The genotypic 
values  were  scaled so that this initial state corresponds 
to a genotypic mean of 0 and genetic variance of VG,m 
The values  of the second and  fourth moments of breed- 
ing values  closely approach  their asymptotic  values 
within 20 generations,  during which the allele frequen- 
cies remain essentially unchanged.  The “equilibrium” 
values  were obtained at generation 25, before the cu- 
mulative  effects  of round-off errors moved the popula- 
tion mean significantly away from the unstable equilib- 
rium at 0. With an infinite number of loci, only fourth- 
order disequilibrium will contribute to kurtosis of 
breeding values; whereas for any finite number,  there 
will be  contributions from within-locus  effects and lower 
order disequilibria. For this reason, Figure 8b separates 
the  component of kurtosis attributable to  fourth-order 
disequilibrium. 

Three basic results emerge from Figure 8 and  runs 
with other sets  of parameter values.  First, the best mul- 
tilocus approximation  for  the 100-locus numerical re- 
sults is obtained by using the moment-based quartic ap- 
proximation for the selection gradient and including 
the estimates for  the higher-order cumulants, K6 and K8, 
given by (53).  Second,  the Gaussian approximation for 
the genetic variance remains quite accurate even  with 
considerable departures from normality. [BULMER 
(1980, p. 157) and  S~RENSEN  and HILL (1983) reported 
similar agreement between Gaussian predictions for  the 
Bulmer effect and numerical multilocus calculations for 
“double  truncation” disruptive selection. Their  numeri- 
cal results indicate that our conclusion is not  an artifact 
of the exchangeability assumption.] Third,  the Gram- 
Charlier and Fourier transform analyses  of the infini- 
tesimal model both  approximate  the numerical results 
very accurately. Note, however, that  the predictions in 
Figure 8 are based on  the infinitesimal limit; but  the 
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FIGURE 9.-Numerically  determined  genetic  variances  and 
kurtoses  under  disruptive  selection  attributable to fourth- 
order  linkage  disequilibrium as a function of the number of 
exchangeable  loci. See text for details. 

multilocus  calculations involve  100  loci.  How  close  is  this 
to the infinitesimal  limit?  Figure 9 shows  how the genetic 
variance and the kurtosis attributable to fourth-order 
linkage  disequilibrium change with the number of  loci. 
V,  seems  to approach an  asymptote  somewhat  faster 
than y4. Hence, it seems  likely that the small discrep 
ancies  observed  between the Fourier  transform  approxi- 
mation and the 100-locus  calculations  would  be further 
reduced by increasing the number of  loci.  More detailed 
analyses  of  finite-locus  effects,  like  those  discussed  below 
for truncation selection,  seem  unwarranted for this 
model,  because it was introduced merely  to counter the 
intuition that additive  polygenic inheritance insures a p  
proximate  normality of breeding values. 

Truncation  selection: Three issues  will  be explored: 
(1) the accuracy of the Gaussian  response  Equation  1, 
(2) the accuracy of the Gaussian Bulmereffect predic- 
tion for the consequences of  pairwise disequilibrium on 
genetic variance, and (3) the accuracy  of our multilocus 
predictions for the third-order linkage  disequilibrium 
(and skew) created by selection. Our analysis  of the in- 
finitesimal  model  suggests that linkage  disequilibrium 
will contribute only  negligibly  to departures from nor- 
mality. Hence, we expect that unless the number of  loci 
is extremely  small, the Gaussian-based  predictions for 
changes  in the mean and for the Bulmer  effect will be 
quite accurate. Some  numerical  results supporting this 
are presented in  Figure  10 a and b. These  calculations 
were performed with the “exchangeable” program, as- 
suming 50  loci, V, = 20, and an  initial  allele  frequency 
of 0.2 (and hence, an  initial  heritability of 0.44). The 
gamete-frequency  recursions  were iterated for 20 gen- 
erations, using  20%, 50% or 80% of the population as 
parents ( i . e . ,  p = 0.2,0.5,0.8). Figure  10a  compares the 
actual change of the mean per generation to the Gaus 
sian prediction (1) based on the mean and additive  ge- 
netic  variance at the beginning of each generation. The 

Gaussian  response  approximation is  always quite accu- 
rate, the percent relative error of this prediction being 
less than 4% for all of the values  shown. The change in 
the response per generation reflects  changes in allele 
frequencies  caused by selection. The final  allele  fre- 
quencies are 0.91,0.66 and 0.39,  respectively,  with 20%, 
50% and 80% survival. 

Figure  10b  compares the observed  ratio VJV,,, to 
the ratio  implied by a Gaussian prediction for the 
BULMER effect.  This  Gaussian prediction is obtained 
from  Equation 45  by assuming that V, has reached a 
“dynamic equilibrium” between the effects  of  selection 
and recombination so that AV, = 0 (c f .  BULMER 1971, 
1980,  pp.  154-160).  BULMER’S  Gaussian-based  approxi- 
mations yield the following  prediction for the genetic 
variance  in  terms of the harmonic  mean  recombination 
rate, rh; the current genic  variance, Vc,m; and the frac- 
tion of the population selected as parents, p:  

(56) 

where f(p) = I( p )  [ t* - I ( p )  I ,  with t* denoting the 
normalized truncation point and I(p) denoting the in- 
tensity  of truncation selection, as in Equation  34b.  For 
the exchangeable  program, rh = 0.5. Prediction (56) will 
be referred to as a “generalized  quasi-linkage equilib 
rium” ( G Q U )  approximation for V, ( c f .  TURELLI and 
BARTON 1990; BARTON and TURELLI 1991). It rests on the 
fact that the time-scale for recombination will often  be 
very rapid  relative  to  selection, so that these  forces  equili- 
brate rather quickly.  Figure  10b  shows that within three 
generations, the values predicted from (56), using the 
numerically  observed  values of Vc,m, closely approxi- 
mate the numerical  observations.  From generations 
three to 20, the maximum percentage relative error is 
less  than 2%. 

The small  levels  of  skew created by third-order dis- 
equilibrium are displayed  in  Figure 1Oc. These are quan- 
tified by y3( d )  = 2 x,zjzk K ~ J  V”,”. The numerically  de- 
termined values are compared  to two different G Q U  
approximations,  based on different approximations  for 
the The “Gaussian”  approximation  uses (34b). The 
“quartic” approximation  first uses (32) to  fit the coef- 
ficients of a quartic  fitness  model under the assumption 
that the distribution of breeding values is Gaussian, but 
then uses (29) to  take into account the departures from 
normality  caused by within-locus  effects (terms like K~~~ 

and K ~ ~ ~ ~ )  and pairwise disequilibria (terms like K~~ and 
K ~ ~ ~ ) .  Like the BULMER approximation  discussed  above, 
these  predictions are obtained by solving A K ~ ~  = 0 (see 
37 and  39), assuming that all higher-order disequilibria 
are 0. Although  higher-order  disequilibria are ignored, 
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the  contributions of  within-locus  effects and disequilib- 
ria up to  order  three  are  included in higher-order cu- 
mulants like K~~~~~~ that enter  our approximation  for A K ~ ~ .  
As expected from our infinitesimal analysis, the ob- 
served  values  of y3( d )  are all extremely small and  are 
adequately approximated by our GQLE scheme. 
However, because the actual values are so small, the per- 
cent relative errors can be  quite large. Given the  appar- 
ently negligible biological importance of such terms, 
more  elaborate approximations seem unwarranted. It is 
worth noting, however, that less elaborate approxima- 
tions, such as the infinitesimal approximation (49) 
which ignores all  within- and between-locus cumulants 
of order  four  or higher,  are far less accurate than those 
presented in Figure 1Oc. 

All  of the numerical examples above are based on the 
“exchangeable” program. To determine  the robustness 
of our conclusions concerning  the accuracy of the Gaus- 
sian approximations for changes in the  mean and the 
BULMER effect under strong  truncation selection, we also 
performed extensive simulations using a more  general 
multilocus selection program, which  allows for linkage, 
unequal allelic  effects and arbitrary allele frequencies. 

The results from a “typical” run, with 40% of the  popu- 
lation selected as parents,  are shown in Figure 11. The 
closed and  open circles compare  the actual change in 
the  mean  per  generation  to  the Gaussian prediction (1)  , 
and  the triangles compare  the actual ratio VG/VG,LE to 
the BULMER prediction (56). These calculations involve 
10 linked loci with recombination rate 0.2 between ad- 
jacent loci and no interference; thus the  harmonic mean 
recombination rate is r, = 0.338. The allelic  effects are 
~0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.2,  and 0.2; and the 
initial frequencies  for  the “+”alleles are 0.1,0.2,0.3,0.2, 
0.1,0.4,0.6, 0.1,  0.4, and 0.4. The calculations were  be- 
gun with the loci at linkage equilibrium, so that VG,u = 
3.8984; we set V, = 5.8476 to  produce  an initial heri- 
tability  of 0.4. As shown in Figure 11, the predictions for 
the  change in the  mean  are always within 2% of the 
observed values;  similarly, after the first four genera- 
tions, the  predicted ratios for VJ VG,= are within 6% of 
the observed values. (The predictions for the first three 
generations  are less accurate, because the  “equilibrium” 
assumption underlying (56) is inappropriate.) Given 
that  much larger statistical errors  are expected from es- 
timating variance parameters from actual populations, 
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FIGURE 11 .-Numerical  results  and  analytical predictions for 
10 linked loci with unequal  effects  under  truncation selection 
(see text for details). The circles  compare  the  actual  change 
of the  mean  per  generation  to  the  Gaussian  prediction ( 1 )  
based on the  current  mean  and  additive genetic variance.  The 
triangles  compare  the  observed  ratio VJ VG,LE to the ratio  im- 
plied by a Gaussian prediction for the BULMER effect. 

these errors caused by departures  from normality are 
negligible. Larger departures  from  the simple BULMER- 
effect prediction  (56)  are observed with tighter linkage. 
However, as noted by BULMER (1980, p. 160) and TURELLI 
(1984), harmonic  mean  recombination rates for poly- 
genic traits are unlikely to  be  much below 0.3 for most 
higher eukaryotes, with haploid  numbers on the order 
of ten and recombination in both sexes. 

DISCUSSION 

Until now, almost all  analyses  of  polygenic selection 
have assumed a normal distribution of breeding values; 
the few exceptions deal with just two loci, or exponen- 
tial, quadratic or weak selection (e.g. ,  B~RGER 1993; 
GAVRILETS and HASTINGS 1993; ZHIVOTOVSKY and 
GAVRILETS 1992; NAGYLAKI 1993). Here, we use a more 
general framework and treat various forms of strong se- 
lection,  in order to  understand why the Gaussian as- 
sumption is so successful when applied  to additive traits, 
and in order to develop general  methods  for multilocus 
problems. We first presented statistical methods  for solv- 
ing  the infinitesimal model, in  which the distribution of 
offspring breeding values is normally distributed around 
the  mean of the  parents, with fixed variance. Here,  the 
approximation  that  the overall distribution is Gaussian 
gives an accurate  prediction  for  the variance, even when 
strong disruptive selection generates substantial devia- 
tions from normality  (Figure 3). We then set out a genetic 
analysis  of  selection and recombination. The population is 
represented by multilocus cumulants K~ between  sets 
of  loci U = { i j k . } ,  and selection is described by the rela- 
tion  between mean fitness and the cumulants (Xv = 
a In ( W)/~K, ) .  Selection changes the noncentral moments 
by (precisely) A,Cg = zv (alU+"e*[0; 0]/d2$9v)9v, 
where the generating function e* [%; 91 = exp[K(% + 9) 

- K(9)  J - exp [K(f) ] and K(jr) denotes  the  cumulant 
generating  function  for  the multivariate distribution of 
allelic  effects (see Equation 19 for  the extension to d i p  
loid notation and Equations 11 and 12 for  the definition 
of the  cumulant  generating  function). The  noncentral 
moments after recombination  are calculated as a sum 
over all the  permutations  produced by meiosis (Equa- 
tions 14  and 15 of  BARTON and TURELLI 1991). Finally, the 
cumulants after selection and recombination are calcu- 
lated from the moments. Although this scheme is ap- 
plied here in detail only to selection on an additive trait, 
it is quite  general; it allows us to show that even  with 
arbitrary linkage and epistasis, one can define a consis- 
tent infinitesimal limit. In this limit, short-term selection 
response is dominated by infinitesimal allele frequency 
changes and linkage disequilibria, with the sum of 
within-locus variances remaining  constant (APPENDIX B).  

Numerical results show that  the Gaussian approxima- 
tion for  the distribution of breeding values  gives remark- 
ably accurate predictions for  the dynamics  of the mean 
and variance in the infinitesimal limit.  With truncation 
selection, linkage disequilibria of order  three  and 
higher never cause much deviation from normality. Dis- 
ruptive selection can generate substantial four-way d is  
equilibria, and  hence kurtosis in the distribution of 
breeding values; but even then,  the Gaussian assump 
tion predicts the variance accurately (Figure 8). Our ge- 
netic analysis indicates why only extreme kurtosis is 
likely to produce large deviations from the normality- 
based predictions for the dynamics  of genetic variance 
attributable  to linkage disequilibrium (the "BULMER ef- 
fect," see Equations 45 and 43). While our statistical and 
genetic analyses lead to good approximations for  the 
deviations from normality under truncation selection, 
they provide no simple intuitive explanation as to why 
these are so small. For example, our weak selection 
analysis (TURELLI and BARTON 1990) suggested that  the 
skew should be  proportional to the selection gradient 
favoring skew, z3, which can become relatively large un- 
der intense  truncation selection (see Figure 5). How- 
ever, approximation (49), which is accurate with strong 
selection, predicts that  the skew should be  proportional 
to (3; - 3zlY2 + 3 z J .  With truncation selection at 
least, these terms nearly cancel, leading to  near- 
normality. Our disruptive selection analyses  show that 
near-normality is not  an inevitable consequence of the 
central limit theorem. 

One can construct  extreme examples in which the 
selection gradients favoring skew and kurtosis are large. 
For example, if W( x) = 1 + b4(x4  - 6V,x2), x being 
measured relative to the  mean,  then z1 = 2, = z3 = 0, 
but Wz4 = b4 (Equations 27-29). Solving the recursion 
for  the  cumulants by setting K, = 0 for i > 8 gives K4 = 
0.165v', for b4 = O.O25/V, The Gaussian prediction is 
V, = VG,LE, since z2 = 0; but  our recursion gives V, = 
1.039VG,,. For stronger selection (but with b4 5 
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1/(9v2,), so that Wremains positive), no solution exists: 
starting from a Gaussian distribution gives ever- 
increasing cumulants. This calculation suggests that 
some forms of selection can generate  enough kurtosis 
that  the Gaussian approximation breaks down, even 
though  it  does not  under truncation or disruptive se- 
lection. Whether a wide  class  of models is  well- 
approximated by the Gaussian assumption, and if so 
why, remain open questions. However, it seems plau- 
sible that most realistic forms of selection will not pro- 
duce large departures. There is an analogy here with the 
success  of the diffusion approximation for genetic drift, 
which remains accurate even in populations so small 
that fluctuations in allele frequency are far from Gaus- 
sian  (EWENS 1979, Ch. 5).  

The success  of the Gaussian approximation suggests 
a general  approach  to multilocus analysis  of additive 
traits. If the distribution of breeding values is close to 
normal,  then dynamics can  be  predicted solely from al- 
lele frequencies and painvise disequilibria (the cumu- 
lants K ~ ) ,  ignoring  higher-order disequilibria, such as 
K~~~ The mean fitness is  now a function of the  mean and 
variance; so higher-order gradients (XUfor I UI > 2) can 
be  neglected, and Xi and gq can be calculated explicitly 
using Equation 25b or 26. Applying these simplifica- 
tions, Equations 35-38 become 

A K ~  = (Kii + K i . )  2, + ( K i i i  + 2Kii.xjiciKiii) 3 2 ,  (57) 

and 

A K - -  = - T - . K . .  + (1 - T J ( K ~  + K ~ ~ )  XI 
4 v 4  

+ [2(Kii + K i . ) ( K j  KT)  (58) 

f (1 - T..)(2K .... + Kiiq + K*)] X2 - A K ~ A K ~ .  
4 “U 

Here,  the sum K~ has been  expanded  into  the  part due 
to within-locus variance, K ~ ~ ,  and  that  due  to a sum over 
other loci K ~ .  (so that ‘‘a” now refers to a sum over distinct 
loci) ; higher order cumulants have been  truncated  to 
include only  painvise  cross-locus  effects.  Given some as- 
sumptions about  the within-locus distributions (for ex- 
ample,  that only two alleles segregate), Equations 57 and 
58 simplify further. Cross-locus disequilibria can, if nec- 
essary, be  approximated using generalized quasi-linkage 
equilibrium ( GQLE, see Equation 56). Even though this 
eliminates the complications of linkage disequilibria, 
one must still  know the distribution of  effects  of each 
locus: this is a fundamental difficulty in understanding 
quantitative traits, since we are usually ignorant of such 
genetic details (TURELLI 1984; BARTON and TURELLI 
1989). 

This approach can be seen as an extension of the in- 
finitesimal model, in which we use the Gaussian assump 
tion to calculate the selection coefficients on individual 
loci, as  well as the response due to pairwise linkage dis- 
equilibria. Although the infinitesimal model is elegant, 

it is accurate only when many  loci are involved (e.g. ,  
Figure 10). Recent analyses of response to 10-20 gen- 
erations of artificial selection have demonstrated signifi- 
cant deviations from the infinitesimal model, probably 
due to changes in allele frequency at a limited number 
of loci (e .g . ,  MEYER and HILL 1991; BENIWAL et al. 1992). 
More directly, genes of major effect have been  mapped 
in selected lines (e .g . ,  LOPEZ and LOPEZ-FANJUL 1993; 
SHRIMPTON and ROBERTSON 1988; YOO 1980) and  natural 
populations (MACKAY and LANGLEY 1990). These may 
contribute significantly to the discrepancies of 20% or 
greater frequently observed between predicted and re- 
alized selection response under artificial selection 
(SHERIDAN 1988; HILL and CABALLERO 1992), whereas our 
results imply that skew produced by linkage disequilib- 
rium is not likely to  be  important. Approximations that 
combine the effects of linkage  disequilibria with those of 
selection on individual  loci are therefore needed; however, 
our ignorance of the distribution of allelic  effects, of pleiot- 
ropy and of  epistasis remains a major  difficulty. 

If linkage disequilibrium does not contribute signifi- 
cantly to  the  frequent  departures from the classical re- 
sponse equation, what does? In  addition to major gene 
effects,  FALCONER (1989, Ch. 12) summarizes several al- 
ternatives in his  discussion  of  asymmetry  of selection re- 
sponse. Our treatment is  wholly deterministic and ig- 
nores  the effects  of genetic drift, which can be 
considerable with the small  effective population sizes 
that characterize most selection experiments. Drift can 
be incorporated  into our analyses  as outlined in Appen- 
dix 1 of  TURELLI and BARTON (1990). Our deterministic 
analyses sought systematic departures from Equation 1, 
analogous to BULMER’S (1971) prediction for changes in 
the variance, that  might  be relatively independent of the 
underlying genetics and  hence experimentally detect- 
able. We expect  that  neither experimentalists nor theo- 
reticians will mourn  our “failure.” Under artificial se- 
lection, departures from Equation 1 will often arise from 
unavoidable natural selection. This confounding selec- 
tion may occur on the  character itself (ZENG and HILL 
1986), on other  characters  that  are genetically corre- 
lated with it (LANDE and ARNOLD 1983), or  on pleiotropic 
effects  of the alleles that  are  not  apparent in external 
morphology (see the discussion in KONDRASHOV and 
TURELLI 1992). Even without epistasis, the  connection 
between standing variation and selection response may 
be less simple than suggested by Equation 1 and its  mul- 
tivariate generalization. 

This report  concentrates on quantitative traits. HOW- 
ever, understanding linkage disequilibria among many 
loci is fundamental  to other evolutionary issues. k g u -  
ments on hitch-hiking and  the “genetic load”  depend on 
combining  the effects of selection and mutation across 
the whole genome.  Understanding  the evolution of  sex, 
recombination, mate choice and so on requires that we 
know  how multilocus selection affects  alleles that modify 
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the  breeding system. Numerical or simulation results 
can be obtained  for  particular models; however,  what is 
needed is a robust relation between the  strength of  se- 
lection on modifiers, and quantities such as the additive 
variance in fitness that  are  (in  principle) observable. 
The methods set out  here can be  applied  to such prob- 
lems: it may be  that  the generalized infinitesimal limit 
(APPENDIX B) is most useful when applied to selection on 
the whole genome. Several  analyses  have already suc- 
cessfully exploited  the  dramatic simplifications that arise 
from  reducing multilocus analyses to a consideration of 
allele frequencies and pairwise disequilibria. A notable 
example is CHARLESWORTH’S (1990) analysis  of mutation- 
selection balance for  deleterious alleles as a force main- 
taining sexual reproduction. 

The observations that quantitative traits are  often a p  
proximately normally distributed and  that  their  inher- 
itance and selection response can  be described ad- 
equately by the additive model (with dominance) raise 
two issues.  First,  is this evidence that  inheritance is in fact 
approximately additive; or alternatively, is the additive 
model  an  adequate  approximation  for many epistatic 
models? The latter seems more plausible. One can easily 
produce models in which  epistasis produces arbitrary 
distributions in the absence of selection; however, these 
may be biologically unrealistic. On  the  other  hand,  at 
least some biologically motivated models of multilocus 
epistatic interactions  tend to produce mainly additive 
genetic variance (KEIGHTLEY 1989) ; so experimental evi- 
dence for epistasis must come from an analysis of means 
rather  than variances ( CJ C o w  et al. 1989; HARD et al. 
1992). The second issue is whether a sexually reproduc- 
ing  population  can  respond effectively to selection that 
favors a non-Gaussian distribution,  for example, disrup- 
tive selection favoring exploitation of  two distinct re- 
sources. This paper shows that even strong disruptive 
selection on  an additive polygenic trait often  produces 
only a slight deviation from normality. Random mating 
and recombination constrains the distribution to a near- 
Gaussian form  that  produces a lower mean fitness than 
could be achieved by a more  general  distribution. This 
is yet another illustration of the fact that mean fitness is 
generally not maximized under multilocus selection, be- 
cause of the  breakup of adaptive allelic combinations 
(KOJIMA and KELLEHER 1961; NAG- 1993). A sexual 
population might be able to adapt  more efficiently by 
exploiting non-additive inheritance. This is clearly  pos- 
sible if a major gene is available [for example, in but- 
terfly  mimicry, sexual dimorphism, or the bimodal dis- 
tribution of beak shape in Pyrenestes finches (SMITH 
1993)l. However, it may be  that no plausible pattern of 
epistasis  can  allow much deviation from normality if in- 
heritance is polygenic.  Sexual populations must then split 
into reproductively  isolated  species ifthey are to exploit the 
full range of resources ( CJ ROUGHGARDEN 1972). Our 
framework can be adapted to address such  problems. 
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APPENDIX A THE RELATION BETWEEN 
SELECTION  GRGDIENTS AND POLYNOMIAL 

COEFFICIENTS 

Appendix A of  BARTON and TURELLI (1991) set out  the 
relation between the  gradients of log mean fitness with 
respect to the  central moments, L, , ,  and the selection 
coefftcients au,v However, there was an  error in that 

Appendix which we correct  here; this error  does  not 
affect the results in the main part of that  paper. 

We begin by writing the relative fitness of an indi- 
vidual W(X, X*) as a function of its genotype at loci de- 
rived from the  maternal gamete (X) and  the  paternal 
gamete (X*). In BARTON and  TURELLI  (1991), diploid 
zygotes  were assumed to  produce  equal  proportions of 
male and female haploid gametes. Therefore,  the mean 
contribution of genes at locus i immediately after meio- 
sis must be the same for the two sexes, and is written 
mi = E [ X i ]  = E p g .  The moments immediately after 
meiosis are  defined with respect to a hypothetical popu- 
lation of zygotes formed by random  union of haploid 
gametes, and so necessarily C , ,  = C,C, However, to 
find  the selection gradients with respect to changes in 
the means and central  moments, we must consider per- 
turbations away from this symmetric state. The per- 
turbed means and central  moments will be denoted by 
mO,, ,  m l a  and i'u,v. We  will first find  the mean fitness as 
a function of these perturbed variables, and  then dif- 
ferentiate to find the selection gradients. 

Equation 6 of  BARTON and TURELLI  (1991) defined the 
individual  fitness as a polynomial function of deviations of 
maternal and paternal genes, ci = 4 - mi, 57 = 

- m,. Since we are considering perturbations to the 
mean, we must  rewrite  this equation in  terms of (ci + mtB - 
mi) and (5: + T & ~  - mi),  where now 5, = 4 - mi0, 5: = 
X: - G,, and cuv = l&<$.. This was done in  Equation 
A7 of BARTON and TURELLI (1991), which should read 

WX, x*) 
w 

= 1 + E 4:0[L.( n (5i + fi65 - mi) - CU 
U I€ U 1 

v [ (e, ) - C"] (All 

u, v ([ ieu 3 
[*" I) 

+ E %.v E n ( e +  %,i - mi) 

+ c %(,E n (5i + q 0  - 4 - cu 

x rI KT+ %,i - m,) - c, 

(the last term was incorrect in the original version). 
We  now take the expectation of Equation A1 over the 

perturbed population. Since we  will only be taking 
the first derivative at  the  point where mi = = mil,@, 

we can expand the products and discard terms of order 
( m i  - m0, i )2 ,  ( m ,  - mi,*)' and higher: 

I,v z= 1 + 2 .",OK"*, - C U I  + 2 %,JG," - Cvl 
U V 

+ c . U , J G , ,  - i'U,,C, - CUG,, + CUGl 
U, v 
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APPENDIX B: SCALINGS FOR THE 
INFINITESIMAL  LIMIT 

How do the dynamical equations simplify  when a very 
large number of  loci contribute to the genetic variance? 
Here, we describe an infinitesimal  limit for an arbitrary 
model. We make no assumption about the relation b e  
tween  genotype and phenotype, or about the kind of se 
lection that acts. Our results are therefore not restricted to 
the additive  case  to  which  they are applied above:  they 
generalize the standard infinitesimal model (BULMER 1980, 
Ch. 9) to allow for dominance, epistasis and linkage. 

We assume that  the effects  of each locus become very 
small, so that  the various cumulants ( K )  tend  to zero as 
the  number of loci, n, increases; the selection gradients 
( Y )  remain of order 1.  This assumption can be inter- 
preted as  follows: the loci affect various traits, which 
combine to determine fitness. The relation between 
traits and fitness stays constant,  but as the  number of  loci 
increases, the effect of each locus on the traits tends to 
zero. It is nowhere assumed that alleles are additive in 
their effects on fitness or on traits. One could instead 
suppose that  the  cumulants stay of order 1, and  the se- 
lection gradients  tend to zero: since all that actually  mat- 
ters is the fitness of each genotype (determined by prod- 
ucts of Xs and %), the way allelic  effects are labeled ( i. e. ,  
the assignment of values to the Xs)  is arbitrary. However, 
this is  less  easy to interpret in terms of measurable traits. 

The derivation hinges on assumptions about how the 
various K’S scale  with n. We suggest a plausible scaling, 
and show that it is consistent, in that if the  cumulants 
start out of this order or smaller, then  the will stay  of 
this order for times small compared with d n. We do  not 
prove that if the distribution of genotypes starts with 
some other scaling (for example, with strong linkage 
disequilibrium), it will decay to  the infinitesimal limit, 
though this seems likely. 

During  the  period when the infinitesimal limit ap- 
plies, the dynamics depend only on the genic variances 
( K ~ ~ )  and  the cumulants across distinct loci ( K ~ ,  K ~ ~ ~ ,  . . . 
with i # j # k . . .). The total genic variance, VG,L, = 
2xi K~~ stays constant, and so the response of the vari- 
ances and higher  moments  to selection is entirely due 
to linkage disequilibria. (Note  that  though we refer for- 
mally to 2 cj K~~ as the “genic variance,” this is not gen- 
erally equal  to  the observable genetic variance of an  non- 
additive trait at global linkage equilibrium.) Moreover, 
in the limit, only selection gradients involving distinct 
indices contribute. If there is no linkage, and loci are 
exchangeable in their effects on fitness ( L e . ,  %‘s = 3,  
for all  sets S ) ,  the  equations simplify further,  and  de- 
pend only on  the sums of linkage disequilibria over  all 
loci. In this case, fitness is a function of the sum of  effects 
over  loci: a scale transformation reduces this fully  ex- 
changeable model to  the additive case. 

Differentiating and evaluating, we obtain: 

L , V  = %v 

for I UI > 0 and I VI > 0, 

V 
(A3b) 

for I UI > 1 and I VI > 1 ,  

and kj  = E aUjv(l VI + l)CUC,. (A3e) 
u, v 

The sums in Equations A3d,  A3e are over all  sets U and 
V, including  the empty set 0. The  error in BARTON 
and TURELLI (1991) was that  the factors ( I UI + l),  
( IVI  + 1) were omitted.  These factors arise because 
there  are ( I UI + 1)  permutations of the coefficients 
ujrjv  that  contribute. 

There was a typographical error in equation A3  of 
BARTON and TURELLI (1991), which  gives the  change in 
the  central  moments in terms of the selection coeffi- 
cients u~,,. It  should read: 

‘,‘ST = x aU,O(cS+U - cScU)cT 

U 

+ c % , v c s ( C T + v -  C T C V )  
V 

(A4) 
+ x uU,v(CS+U - cScU)(cT+V - cTcV) 

U V  

- 2 CTCs-iAsm,,O - 2 CsCT-jAs%j + @a2). 
IES jE T 

Equation A4 includes  the  factors C, and C, in  the 
fourth  and fifth  terms that were omitted  from  the  pre- 
vious version. 
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The  scaling  assumptions: Denote a set of repeated 
indices by I = (iiii . . .] and a set of distinct indices by 
( i j k  . . .}. More complex sets will be written as U = 
IJK. . . , where I is a set of one  or more i's, and so on. 
Letters I, J, K . . . will be reserved for sets  involving  only 
a single index i, j ,  k ,  whereas S, T, U, V . . . denote 
arbitrary sets. 

We assume that within-locus cumulants K~ are of order 

ditive trait, this must be true  for  the K~~ if the genic vari- 
ance VG,LE = 2 zi K , ~  is to stay  of order 1. It will be true 
of higher within-locus cumulants if the distribution of 
allelic  effects  stays  of the same form,  but has width that 
decreases with l/G. This  can  be seen most easily with 
biallelic loci, with  allelic  effects that scale  as 1/G. The 
exception to this rule is K ~ ,  since this represents  the 
within-generation change in mean relative to  the zygote 
population, and is O( 6'). We show  below that in gen- 
eral, A s ~ I  is O(n-("1+')/2 ). 

We assume that cumulants, K ~ ,  across  sets  with distinct 
(non-repeated) indices, U = { i jk  . . .), scale  as n- 'I. This 
is plausible, because there  are - n 'I such coefficients 
( z .e . ,  n(n  - 1) ( n  - 2) . . . ( n  - I UI - 1)  - n'" for 
large n): it is certainly true in the additive case if all the 
linkage disequilibria are of the same order in n. It is not 
obvious how to scale more complicated quantities. We 
assume that  the  cumulant K ~ + "  = K~~ is  of order 

I I1 /2. . thus, K~~ is O( n-l) and K~~~ is O( n - 3 / p ) .  For an ad- 

n-[rul+(lIl+l)/21 ,where there are I UI distinct  indices  in the 
set U; Similarly, K~ is  of order ~-[1Ulf(l"+l)/2+(~JI+')/21. 
Thus, each additional  repeated  index divides K by 
6. In  general, K' is O( n-(#indices+#'oci)/2) with more 
than one locus in U, or with a single index, K ~ ;  K~ is 
O( n-(#indices)/2) with one repeated  index in I. We show 
below that if a population starts in linkage equilibrium, 
selection will generate linkage disequilibria ( K ~ ~ . . . )  that 
satisfy these scaling relations for  the first and subsequent 
generations. 

In  finding  the effects of selection and recombination, 
we  will be dealing with polynomial functions of the cu- 
mulants, in which each  term is a product  that contains 
every element of a given set exactly once. If the set con- 
tains only one index, i ,  then each cumulant in the prod- 
uct, K ~ , ,  is O(n-"1/2), and so each term is O(n-1z1/2). 
Next, consider sets U f  I in which  only one index, i, is 
repeated. Each cumulant K S  is  of order n-(#loCi + #indices)/2, 

unless it consists  solely  of repeated indices from the set 
I, in which  case it is O( Thus,  cumulants K ~ ,  

involving  only repeated  elements of I are O( n-("' l /z))  
(or O( n-') if I I' I = I), cumulants K,,,, involving  only 
elements of U are O( n-' " I ) ,  and "mixed" cumulants 
K ~ , ~  involving both  are O(n-(1v1+'p1/2+1/2)).  Since in ev- 
ery term of the polynomial, the  number of loci and the 
number of indices sum to I UI + 1 and I UI + I I I re- 
spectively, each term is  of order n - ( " ' + 1 r ' ~ e + m ~ 2 ~ ,  where m 
is the  number of "mixed" cumulants, plus the  number 
of K ~ .  Applying the same argument  to several  sets  of re- 
peated indices, we find  that  each  term has the same 

form, O(,-(IUl+lII/P+Ijl/2+ ...+ m/2j ). Now, m is a sum over 
cumulants  contributing to the  product, with cumulants 
containing only elements from U, or only elements from 
one of I or J . . . contributing 0; cumulants  containing 
a single element  contributing 1; cumulants containing 
elements from Uand  one of I, J, . . . contributing 1; and 
generally, cumulants  containing  elements from more 
than one locus, and from k of the I, J ,  . . . contributing 
k .  We  will usually  only be concerned with the leading 
terms, where m = 0, which will include only "pure" cu- 
mulants with two or  more indices drawn from  either  the 
set of distinct indices U, or from only one of the  repeated 
sets ( I o r  J . .  .). 

Through most of this appendix, we have not referred 
explicitly to the distinct sets of loci drawn from  the two 
parental gametes, x and x*. As in the rest of the  paper, 
extension to the full diploid case is trivial, using the con- 
vention that indices are  considered to be  repeated only 
if they are derived from the same gamete. For example, 
K ~ , ~  is O( n-'), whereas K ~ ~ , ~  is O( 6'). 

Clearly, there  are models that violate these scaling as- 
sumptions, for example, where one  or a few major loci 
combine with a large number of modifiers of  small  ef- 
fect, so that some of the allelic  effects are 0(1) instead 
of O( n-'/'). Itwould  be  interesting  to investigate models 
with strong epistasis, for example, where fitnesses are 
assigned to genotypes at random from some distribution 
( CJ KAUFTMAN and LEVIN 1987). Against a fixed genetic 
background,  an allele will then have a large effect-of the 
same order as the  range of the distribution. However, 
the average effect of a substitution-averaged over  all ge- 
netic backgrounds, as  is appropriate  near linkage 
equilibrium-will be small, and of order l/&. For this 
model,  the selection gradient$ are of order 1 if within- 
locus cumulants scale  as K~ = O( n-""2), and  the  popu- 
lation is in linkage equilibrium. However, we have not 
been able to demonstrate  that  the selection gradients 
are still O(1) in the  presence of  weak linkage disequi- 
libria, K~ = 0 (n-  ''I). 

The  response to selection: The effect of selection on 
the  non-central  moments is derived from the  generating 
function G* (Equations 16 and 17). In calculating the 
change in the cumulants, it is simpler to work  with the 
analogous matrix G appropriate  to describe the leading- 
order effects  of selection on cumulants: 

G[% j r ]  = exp[K(fi + jr )  - K(Y) - K(f)] - 1, (Bla) 

with 



Polygenic  Selection  Kept  Simple 939 

Equation Blb gives the  change  in  the  cumulants only 
to  first order  in 9" ( c f :  (2.5) of TURELLI and BARTON 
1990). However, we show below that  the exact change, 
A s ~ U ,  is of the same order as the first-order  change, 

G[ U; v] is a polynomial in K, each  term of  which con- 
tains every element of W exactly once. (This follows 
from a dimensional argument, by assigning distinct 
units to each element of the vectors I, 9) .  G[ U; v] has 
the  convenient  property  that every cumulant in G[ U; VI 
includes elements  from U and also from V. To see this, 
consider a l U 1 G [ O ,  9] /dIv Since the  exponential factor 
reduces  to 1 when I is set to zero, this has the form of 
a polynomial in a'"'[K(9) - K ( 0 ) ] / & u ,  where U' is a 
subset of U. Unless this is further differentiated with 
respect to yln giving  terms of the form K ~ + ~ ,  it will reduce 
to zero when 9 is set to zero. Hence, every cumulant in 
G[ 9 VI must include indices from both U and V 

Consider first the  change in within-locus cumulants, 
K~ This is the sum of terms like G[I; SI'M] where S is a 
set of distinct loci not containing i, I' is a set of indices 
{ iii . . .), and M is a set of b repeated indices, {JK . . .], not 
containing i or the  elements of S. We can divide the 
whole expression into a sum over  classes  of terms, each 
class being  defined by I S I , I I' I , IJI , I K I . . . Each class 
involves a sum over O( terms (corresponding to 
the  number ofways to choose the  indices),  each of order 

position of the sets, as discussed above);  the net contri- 
bution is therefore O( n-(t'+P1/2+'M1/2+m/2-b)). The lead- 
ing  terms would  have no "mixed" cumulants ( m  = 0). 
However, the matrix G[I; SI"] contains no terms with 
cumulants involving  only the  set M ,  since these are 
drawn from  the second set alone  and would reduce to 
zero as noted above.  Similarly, it contains no terms in- 
volving  only the set S. Terms with m = 0 must therefore 
have M = 0, and so the class  of leading order is SI'M 
= {i), giving G[I; i]9i  = K~$?;, which is O(n-("I + l ) I 2 ) .  The 
leading  terms with m = 1 have M ,  I' = 0; the leading 
component is G[I; SIXe,, and is also O(n-(l'l +')I2). Since 
this component  contains only one mixed term, and yet 
contains no cumulants with elements  from only lor  only 
S, it equals K ' + ~  These terms can  be written explicitly, 
giving 

A S K U .  

,-(lSl+lI+Z'1/2+IM1/2+m/2) (with m determined by the com- 

A S K z  = K 1 + i 2 i , 0  + x K I s 9 , 0  f O(n-(1n'/2+')), (B2) 
S 

where the sum is  over sets of distinct loci S that do  not 
contain i. We have written the selection gradients here 
in the explicit diploid form. Since A S K I  is O(n-(t'1+')/2 ), 
and K' is O(n-1'1'2), this shows that  the distribution of 
effects at each locus changes slowly, over a time scale  of 
6 generations  for  each  cumulant. 

This argument identifies the classes  of selection gra- 
dient that make the leading contributions  to  the selec- 
tion response. Provided that selection acts only through 
gradients of low order,  the  net response will be of the 

same order as the leading class.  However, if selection 
acts through epistatic interactions ofvery high order [Ye,, 
with I S I - n) , the sum over  very  many  classes  of terms 
might lead to a signifkant cumulative effect. This is a 
complicated issue that deserves further  attention. How- 
ever, note  that with two alleles per locus, there is only 
one  gradient of order n (YQk.. .), suggesting that  at least 
in  this case, classes  of  very high order  not  included  in 
Equation B2 will not have a substantial  cumulative 
effect. 

Next, consider the response of the  crosslocus cumu- 
lants to selection, A s ~ u ,  where U is a set of distinct loci. 
This is the sum of terms like G[ T Q  SQ'M]YSqM, where 
TQ = U, Q is a set of distinct loci { i , j ,  k . . .], S is a set 
of distinct loci not overlapping with Q' is a set of 
(possibly repeated) indices {w. . .) involving the loci  in 4, 
and M is a set  of b repeated indices {AB. . .I, not overlap 
ping with the other sets. Each  such  class  includes n(lst+b) 
terms,  each  of order n-(ISl+ln+lQcQt/2+1M1/2+m/2). the net 
contribution is therefore O(n-(l"+IQcQ1/2+1M1/2+.1/2-b) ). 
First, we find  the leading terms with no "mixed" cumu- 
lants ( m  = 0). G[ U; contains no terms with cumulants 
involving  only the set M ,  since these are drawn from V 
alone. Terms with m = 0 must therefore have M = 0. 
Thus,  the leading component is G[ T Q  SQJZS,, which 
is O(n-(lT'+'Q1)) = O(n-'"),  the same order as K~~ = K", 

as required.  Terms with m 2 1 are negligible. 
Elements of the matrix G that  connect overlapping 

sets of  loci can be simplified in the infinitesimal limit. 
First, consider G[ U, v], where U and V overlap for the 
single index i; thus, U = S + { i] and V = T + {i], with 
S f l  T = 0. From Equation B1, 

G[S+{i}; T + {i}] 
- d'sm+2(exp[K(I + 9) - Q) - @I)]) 
- 

&.&Ti 

dlsn a'H$ + 9) dIqI+jl)  aaq] - 4  [ ai a; 

x ["Y - F]) 
- 
ak,q, aiqi + -" 

033) 

X exp[f@ + 9) - I@) - a&)]) at 2, 9 = 0. 

Only terms containing K ~ ;  contribute  to leading or- 
der,  and so only terms in which the first factor 
(d2K(I + 9 ) / d f L t q i )  is not  further differentiated con- 
tribute.  Thus,  to  leading  order, 

G[S + {i}; T + {i}] (B44 

= ( aiqi )( a w 7 -  ) d2K(f + 9) dImexp[K(% + 9) - @) - @%)I 

at I, 9 = 0 

= K,G[S; 71 + O(n"S1-1T1-3/2) for I SI,  I TI > 0. 
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Also, 

and G[i; Ti] = G[Ti; i] = K~~~ = O(n-1n-3/2). (B4c) 

These relations extend recursively to give G[ U; v] where U 
and Vcontain  distinct  indices and overlap at several  loci. 

We can use these reduction formulas to write  as^,,, 
explicitly 

where the sum is over  sets  of distinct loci S that do  not 
overlap with U, and over  all subsets Q of U. Note that 
G [ 0 ;  01 = 1, so that  the sum includes the term (n,, K ~ ~ ) Y ~ , ~ ,  which is the only contribution at linkage 
equilibrium. 

When only two alleles segregate at each locus, cumu- 
lants with repeated indices reduce  to those with distinct 
indices, and so the derivation above  suffices.  With  mul- 
tiple alleles, similar arguments can be used to derive the 
effects  of  selection on cumulants involving repeated indi- 
ces, A , K ~  These are all  of the same order as the K~ them- 
selves,  showing that our scaling  rules are consistent. 

Strong  selection: The change  in  the  cumulant gen- 
erating  function due to selection, ASK(%), is precisely 
log[l + A s f ( % ) / f ( k ) ] ,  where A&%) is the  change in the 
moment  generating  function. The previous section 
dealt with the first order approximation to this, 
ASK(%) = Aj(k)/f(%). An exact expression for A , ~ ~ c a n  
be found by expanding log[ 1 + A](%)/f(%)] in a Taylor 
series, differentiating with respect to  the set U, and a p  
plying the  product rule: 

1 
2 A s ~ u  = d s ~ U  - - 2 ~ , K ~ , A , K ~ ,  

U,+&=U 
(B6) 

1 
3 

+ - 2 A,K~,A,K~~A,K~~ + . , 
UI+&+US=U 

A s ~ U  is  always  of order n-(#'oci+#indices)/2. Since the  num- 
ber of indices represented  in  the sets U, + U, + U, . . . 
always sums to I UI , and the sum of the  number of  loci 
represented in the Ui must be at least equal to the number 
of loci  in U, each of the terms in Equation B6 must be of 
the same order as A s ~ U  or smaller. Allowing for strong se- 
lection therefore does not alter the order of the K~ 

Recombination: Since recombination breaks down 
associations among loci, it is hard to see how it could 
generate cross-locus cumulants of higher order  in n than 
is assumed by our scaling rules. This can be  demon- 
strated as  follows. From Equation 14 of  BARTON and 

TURELLI (1991), 

The non-central moments after recombination, C$ are 
a sum over the non-central moments before recombi- 
nation  (but after selection), C$, the sum being taken 
over  all partitions S + T of the set N. The pairs of terms 
C:,;, C$:s arise because gametes are  inherited equally 
from  the two sexes; their frequency may differ if selec- 
tion acts differently in males and females. (Note  that 
because recombination  does  not  alter  the means K ~ ,  

Equation B7 applies whether we use central or non- 
central moments.) Where the set N contains only  dis- 
tinct indices, every element in the sum is  of order n-INI 
and so recombination does not change the order of C $ .  
(Note that when  Ucontains  distinct  indices, CEis of order 
n- I UI ). The cumulant K~ consists of a sum of terms,  each 
containing a product of C's of order n- N I ;  it therefore also 
remains of the same order  under recombination. 

Next suppose N contains repeated indices. Consider 
N = UIJK . . . , where U contains distinct indices not in 
IJK . . . A dimensional argument shows that  the cumu- 
lant K~ after recombination is  given  by a polynomial in 
the original cumulants, in which each term contains ev- 
ery index in N exactly once. However, each index may 
be associated with either of the  parental gametes. (For 
example, the expression for K ~ ~ ~ ~ , ~  includes terms like 
K . .  and K~ K ~ ~ ~ ) .  Each term in K ~ ~ ~ . . .  is  of order 

terms. Since K ~ ~ ~ . . .  is  itself  of order n-"1uK'.'1/2+m*/2), 
where m* is the  number of sets  of repeated indices, re- 
combination could generate terms of higher order only 
if these had  the  form K ~ K ~ K J K ~ .  . . or K ~ ~ K J K ~ .  . . , so that 
m < m*. Such terms do appear in the expressions for 
C%gK...,O; however, since the  moments always appear as 
differences between different partitions of the same set 
( e . g . ,  C;I,T/K... - C h K  ... these products of pure cu- 
mulants always cancel. The leading term in K ~ ~ ~ . . . .  is 
0(n-("1+1~K'"1/2+m*/2)), as required. Letting K' denote 
the  cumulants after selection and K" the  cumulants 
after selection and recombination, we see, for example, 
that = (1 - ri,)K&O + ri,JK:i.U + 

Changes in mean  and  variance: In this section, we 
write the  contributions of indices from  the two gametes 
explicitly. The change in mean under selection contains 
a contribution  from  the within-locus variance K ~ , ,  and 
from linkage disequilibria with distinct sets of loci, L? 

n~~~uI+IqK"'I;~+;/2), where is contributed by mixed 

= K l i 2 e , B  + K l u ~ u , e r  + ~ ( n - s ~ ) .  ( B W  
U 

Here  and below, sums are over  sets  Uof distinct indices, 
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not including i. The change in genic variance is 

A s ~ , i  = K i i i 2 1 , 0  f 2 K j i u 2 , 0  + qn-'). (B8b) 
U 

The change in within-locus variance is O( TZ-~") ,  while 
the within-locus variance is O( n-'). Hence,  it will remain 
approximately constant  for times o(&). The changes 
in  two-locus cumulants are: 

A s ~ t j  = 2 ~ 1 i ~ U z t j , D  + ( 1  U l + 1 ) ( ~ j t ~ j $ i u , 0  + K ~ K S ~ , , )  
U 

- A s ~ I A s ~ j  + 
and 

A s ~ i d  = K ~ ~ K ~ ~ ~ , ~  + ( K , ~ K , ~ % ~ , ,  + K , K ~ ~ ~ , , )  
U ( B W  

+ x 2 K ~ K ~ $ ~ , ~  - A s ~ j A s ~ ,  + O(n-5/P). 
U S+T=U 

The first term in Equation B8c  is due to G[ ij and 
G [ ij jz] , the second term  to  the ( I UI + 1 )  permutations 

of the  form G [ ij; iv] , and  the final term to G [ ij; Ul . The 
factor ( I U I +1) does not  appear in Equation B8d  be- 
cause there is only one way  of choosing G [ i, j i, v] . The 
factor ( I  UI ! / I  SI ! I TI !) in Equation B8c arises because 
we are now  explicitly distinguishing indices derived 
from each parental gamete. The indices in S and T both 
correspond to indices drawn from the same parental 
gamete; there  are ( I  UI !/ I SI ! I TI !) ways  of partitioning 
the set of indices U from a single gamete  into sets S, T. 
In Equation BSd, this factor does  not  appear, because 
the sets S and T correspond to selection YeST on some 
particular set of indices S from one gamete and T from 
the  other. For the same reason, a factor two appears in 
the first term of Equation BSc, but  not in the first term 
of Equation B8d.  After recombination, 

A K . .  = ( 1  - r ) A  K - .  + 7;1As~i,j - T - ~ K ~ .  (BSe) 

When selection is on an additive trait, these expres- 
sions simplify  substantially. Since K ,  uI  = ~,+,,(I UI !/ 
I S I !  I T I ! ) K ~ , ~ ,  2s,T = (I Ul!/lSl! I Tl!)2,",, where U = 
S + T. Using this relation, Equations B8 reduce  to Equa- 
tions 42-43 for selection gradients to g4, with no 
linkage. 

9 21 $ 9  


